basic-80
reference
manual

-

This manual is a reference for Microsoft’s BASIC-80 language, release 5.0 and later.

There are significant differences between the 5.0 release of BASIC-80 and the previous releases
(release 4.5 and earlier). If you have programs written under a previous release of BASIC-80,
check Appendix A for new features in 5.0 that may affect execution.

IS

i

% s ~r

B .
. .
w "
<3
R
A1 “t;
[) -
s 1
€1,
Ty
n . .
. ¥
4
+
.

e

s

U e

e e TR R U

T YRS

e,
e b T
[PRt

A - R

s AN S
LIRS 24
s b

i

. " v
c by n s e
L L S SN

- e T g ot

SRR S A 12 [

Information in this document is subject to change without notice and does not represent a
commitment on the part of Microsoft. The software described in this document is furnished
under a license agreement or non-disclosure agreement. The software may be used or copied
only in accordance with the terms of the agreement. It is against the law to copy Microsoft
BASIC on cassette tape, disk, or any other medium for any purpose other than personal
convenience. : :

© Microsoft, 1979

LIMITED WARRANTY

MICROSOFT shall have no liability or responsibility to purchaser or any other person or entity
with respect to any liability, loss or damage caused or alleged to be caused directly or indirectly
by this product, including but not limited to any interruption of service, loss of business or
. anticipatory profits or consequential damages resulting from the use or operation of this
product. This product will be exchanged within twelve months from date of purchase if
defective in manufacture, labeling or packaging, but except for such replacement the sale or

subsequent use of this program is without warranty or liability.

- THE'ABOVE IS A LIMITED WARRANTY AND THE ONLY WARRANTY MADE BY MICROSOFT.

ANY AND ALL WARRANTIES FOR MERCHANTABILITY AND/OR FITNESS FOR A PARTIC-
ULAR PURPOSE ARE EXPRESSLY EXCLUDED.

To report software bugs or errors in the documentation, please complete and return the
Problem Report at the back of this manual.

CP/M isa registered trademark of Digital Research

8101-530-07

" .
. - o -

v T .
LR P
o P 5
[ERRE AR
s

g

3
b
4 i

o

Introduction

“BASIC-80 is the most extensive implementation of BASIC
available for the 8080 and 280 microprocessors. In its
fifth major release (Release 5.0), BASIC-80 meets the ANSI
qualifications for BASIC, as set forth in document
‘BSRX3.60~-1978. Each release of BASIC-80 consists of three
upward compatible versions: 8K, Extended and Disk . This
manual is a reference for all three versions of BASIC-80,
release 5.0 and later. This manual is also a reference for
Microsoft BASIC-86 and the Microsoft BASIC Compiler.
‘BASIC~-86 is currently available in Extended and Disk
Standalone versions, which are comparable to the BASIC-80
‘Extended and Disk Standalone versions.

There are significant differences between the 5.0 release of
‘BASIC~-80 and the previous releases (release 4.51 and
.earlier). If you have programs written under a previous
release of BASIC-80, check Appendix A for new features in
5.0 that may affect execution.

The manual is divided into three large chapters plus a
number of appendices. Chapter 1 covers a variety of topics,
‘largely pertaining to information representation when using
BASIC-80. Chapter 2 contains the syntax and semantics of-
every command and statement in BASIC-80, ordered
-alphabetically. Chapter 3 describes all of BASIC-80's
intrinsic functions, also ordered alphabetically. The
appendices contain information pertaining to individual
-operating systems; plus lists of error messages, ASCII
.codes, and math functions; and helpful information on
_assembly language subroutines and disk I/0.

. g e e
b

i w
EHERIER Y
C b e e
’ = e
w s S n ey
e

t o “ e we e
"1 TV .
oo B

oo
wo el e
; PO

; e e [
= s AT
N

INTRODUCTION
CHAPTER 1
CHAPTER 2
CHAPTER 3

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

APPENDIX

BASIC-80 Reference Manual

o 0 85 Moo o a W

2 B R®R 4 M

CONTENTS

General Information About BASIC-80

BASIC~-80 Commands and Statements

New Features in BASIC-80,

BASIC-80
Assembly
BASIC-80
BASIC-80
BASIC-80

BASIC-80

_BASIC-80 Functions

Disk I/O
Langﬁage
with the
with the
with the

with the

Release 5.0

Subroutines

CP/M Operating System
ISIS-II Operating System
TEKDOS Operating System

Intel SBC and MDS Systems

Standalone Disk BASIC

Converting Programs to BASIC-80

Summary of Error Codes and Error Messages

Mathematical Functions

Microsoft BASIC Compiler

ASCII Character Codes

3

<

i

S
HEs~
o
'
>

a -
b S
JOR
o
PR s

~ .
PR

CHAPTER 1

GENERAL INFORMATION ABOUT BASIC-80

1.1 INITIALIZATION

The procedure for initialization will vary with different

implementations of BASIC-80. Check the appropriate appendix
at the back of this manual to determine how BASIC-80 is

initialized with your operating system.

1.2 MODES OF OPERATION

When BASIC-80 is initialized, it types the prompt "ok".
"0k"™ means BASIC-80 is at command level, that is, it is
ready to accept commands. At this point, BASIC-80 may be
used in either of two modes: the direct mode or the
indirect mode.

In the direct mode, BASIC statements and commands are not
preceded by line numbers. They are executed as they are
entered. Results of arithmetic and logical operations may
be displayed immediately and stored for later use, but the
instructions themselves are lost after execution. This mode
is useful for debugging and for wusing BASIC as a
"calculator" for quick computations that do not require a

complete program.

The indirect mode is the mode used for entering programs.
Program lines are preceded by line numbers and are stored in
memory. The program stored in memory 1is executed by
entering the RUN command.

&

1.3 LINE FORMAT

Program lines in a BASIC program have the following format
(square brackets indicate optional):

nnnnn BASIC statement{:BASIC statement...] <carriage return>

Yo :. .
o e T - owae o,

GENERAL INFORMATION ABOUT BASIC-80 Page 1l-2

At the programmer's option, more than one BASIC statement _
may be placed on a line, but each statement on a line must.. .
be separated from the last by a colon.
A BASIC ﬁﬁbéram line always begins with a line number, ends
with a carriage return, and may contain a maximum of:

72 characters in 8K BASIC-80

255 characters in Extended and Disk BASIC-80. ‘
In Extended and Disk versions, it is possible to -extend a-
logical line over more than one physical line by use of the
terminal's <line feed> key. <Line feed> lets you continue
typing a logical 1line on the next physical line without
entering a <carriage return>. (In the 8K version, <line
feed> has no effect.) R

1.3.1 Line Numbers

Every BASIC program line begins with a line number. Line
numbers indicate the order in which the program lines are
stored in memory and are also used as references when-
branching and editing. Line numbers must be in the range.0
to 65529. In the Extended and Disk versions, a period (.)
may be used in EDIT, LIST, AUTO and DELETE commands to refer
to the current line.

GENERAL INFORMATION ABOUT BASIC-80 Page 1-3

1.4 CHARACTER SET

The “BASIC-80 character set is comprised of alphabetder s
characters, numeric characters and special characters;: SIS S

',‘“"a-"~

The alphabetic characters in BASIC-80 are the upper case andk

ol

lower case letters of the alphabet. SR R

g oA

The numeric characters in BASIC-80 are the dlglts 0 throughva
9. R A

The following special characters and tefminalv’keyg‘ £EL
recognized by BASIC-80: e ys ar

EEEPEE

Character Name S-S
i Blank
= Equal sign or assignment symbol
+ Plus sign
- Minus sign
* Asterisk or multiplication symbol
/ Slash or division symbol R P O
e Up arrow or exponentiation symbol
¢ Left parenthesis "
oy Right parenthesis
o Percent e
- Number (or pound) sign
'8 Dollar sign - £3
-1 Exclamation point Jo L LeEn e
[Left bracket - Y ERD
] Right bracket
' Comma
. Period or decimal point
! Single quotation mark (apostrophe)
7 Semicolon
: Colon
& Amper sand
? Question mark
< Less than
> Greater than
\ Backslash or integer division symbol
@ At-sign
_ Underscore
<rubout> Deletes last character typed.
<escape> Escapes Edit Mode subcommands.
See Section 2.16.
<tab> Moves print position to next tab stop.

Tab stops are every eight columns.
<line feed> Moves to next physical line.
<carriage

return> Terminates input of a line.

GENERAL INFORMATION ABOUT BASIC-80 Page 1l-4

v R

4 I" “’Céi‘iérol Char acters

The foiié:w:ng control characters are in BASIC-80:

ey

Contr%i«ﬁ Enters Edit Mode on the line being typed.
chtrml-c ©+ . Interrupts program execution and returns to
;‘f*n © . BASIC-80 command level.

Ccntrcl-uG Rlngs the bell at the terminal.

Control-H Backspace. Deletes the last character typed.

Control-I Tab. Tab stops are every eight columns.
Halts program output while execution
- continues. A second ~Control-O restarts
-output.

Control-R := Retypes the 1line that is currently being
typed.

Control-S Suspends program execution.

Control-Q . Resumes program execution after a Control-S.

Control-U ‘Deletes the 1line that 1is currently being
typed.

1.5 CONSTANTS

Canstants -are the actual values BASIC uses during execution.
THEYE "are “two types of constants: string and numeric.

A st.r:.ng constant is a sequence of up to 255 alphanumeric
characters enclosed in double quotation marks. Examples of
string coristants:

L. MHELLO"
A 25, 000.00"
"Number of Employees”

Numer ic constants are positive or negative numbers. Numeric
constants in BASIC cannot contain commas. There are five
types of numeric constants:

1. Integer constants Whole numbers between =-32768 and
+32767. Integer constants do not
have decimal points.

2. PFixed Point Positive or negative real numbers,

constants i.e., numbers that contain decimal

points.

18

GENERAL INFORMATION ABOUT BASIC-80 Paage 1-5

TiLolAmTuT
3. Floating Point Positive or negative numbers repre-
' constants sented in exponential form. (;slmllar
to scientific notationd-—~ A

floating point constant consists.of,
an optionally signed integer or
fixed point number (the mamtissa)-."
followed by the letter E and an
optionally signed integer 7~ (the--
exponent). The allowable rarige for
floating point constants is 10-38

o 10+38. : Do B sgony
Examples:-)

235,988E~7 = ,0000235§§3 delgnrno
2359E6 = 2359000000 . - PR

(Double precision floating - pedint. -
constants use the letter D Anstead
of E. See Section 1l.5.1.)

4, Hex constants Hexadecimal numbers with the prefix- -
&H. Examples:
&H76 R IET RS e
&H32F
5. Octal constants Cctal numbers w1th the prefl>< &O or
’ &. Examples: : S e
&0347
&1234

i 5 .
A i oo Lo
D L L T

1.5.1 Single And Double Precision Form For Numerlc Ccynﬁﬁﬁhts}

B

- In the 8K version of BASIC-80, all numeric constantcs are
single precision numbers. They are stored with 7 d1g;r%s cf
precision, and printed with up to 6 digits. SLEIRTL

- o P
Fait ;«wﬁ.zs"

In the Extended and Disk verSLOns, however, . rumeric
constants may be either 51ngle precision or double prs&cf%lon
numbers. With double precision, the numbers are storey&5w1th
16 digits of precision, and printed with up to 16 digE s

GENERALS INFORMATION ABOUT BASIC-80 Page 1-6

A single precision constant is any numeric constant that
has: | ’

vy

”1sébeh or fewer digits, or

N 3xéxbcnemtial form using E, or

: .a tralllng exclamation point (!)

Mprec1510n constant is any numeric constant that

"1, eight or more digits, or
2. exponential form using D, or

3. a trailing number sign (#)

Examples:
Single Brecision Constants Double Precision Constants
46.8 345692811
-1.09E-06 ~1.09432D~-06
3489.0 3489.04%
22.51 7654321.1234

1.6 VARIABLES

Variables are names used to represent values that are used
in a BASIC program. The value of a variable may be assigned
explicitly by the programmer, or it may be assigned as the
result of calculations in the program. Before a variable is
assigned a value, its value is assumed to be zero.

1. 6*1 zV"am.able Names And Declaration Characters

BAS%C-%G?VarLable names may be any length, however, in the
8K version, only the first two characters are significant.

In the Extended and Disk versions, up to 40 characters are
significant. The characters allowed in a variable name are
letters and numbers, and the decimal point 1is allowed in
Extended and Disk variable names. The first character must.
be a letter. Special type declaration characters are also
allbwed w— S@e below. :

‘:E“‘;“’M -

~Aw»

A veriébhe name” mayv:. not be a reserved word. The Extended

s e

o
fxd

g

e S

;7 o

and’ " Pidk: wmersions allow embedded reserved words; the 8K &
vergion does not. If a variable begins with PFN, it is izz
assumed = to ‘be a call to a user-defined function. Reserved “us

wor&ﬁwxnﬁln&e all BASIC—SO commands, statements, function .

L E

v, .
DL T

-

GENERAL INFORMATION ABOUT BASIC-80 T T “Pageld#TiIo

names and operator names. BT T N

Variables may represent either a numeric value or a string.
String variable names are written with a dollar siga: ($):@as
the last character. For example: AS = "SALES REPORT". The
dollar sign is a variable type declaration character, that
is, it "declares" that the variable will represent a string.

. - £

.o b o i

In the Extended and Disk versions, numeric variable names.
may declare integer, single or double preéisibh%%a@§§%§m~?
(All numeric values in 8K are single precision.) The type’="
declaration characters for these variable names are as
follows: e E

Qm‘

% Integer variable = RIS <
! Single precision variable oW E
Double precision variable CEalrmenl

The default type for a numeric variable name: s :gingle..:
precision.)

Examples of BASIC-80 variable names follow.

In Extended and Disk versions:

PI# declares a double precision value
MINIMUM! declares a single precision value
LIMITS% declares an integer wvalue

In 83, Extended and Disk versions:

NS declares a string value
ABC represents a single precision value

In the Extended and Disk versions of BASIC-80, there is a
second method by which variable types may be declared. The
BASIC-80 statements DEFINT, DEFSTR, DEFSNG and DEFDBL~may be:.
included 1in a program to declare the tyﬁes fbf*certain
variable names. These statements are described in: detaid -in: ;.
Section 2.12, : : gt

1.6.2 Array Variables

An array is a group or table of wvalues referenced by 'the-
same variable name. Each element in an array is :eferenced"
by an array variable that is subscripted with an: integer.: ot
an .integer expression. An array variable name has &g mang.-.
-subscrlpts as there are dimensions in ‘the arrays -~For .-
example V(10) would reference a value in a one~dimernsion:.
array, T(l1,4) would reference a value in. a tWOﬂdLmHnSEQn
array, and so on. The maximum number of dimensions for an

= - N
e [W

GENERAL INFORMATION ABOUT BASIC-80 Page 1-8

array is 255. ‘The maximum number of elements per dimension
is 32767.81

1.6.3 3péée Reguirements

VARIzuaz.Es-nﬁ;w | BYTES
INTEGER 2
.~ SINGLE PRECISION 4
c:szou : 8
s BYTES
"% %7 INTEGER 2 per element
SINGLE PRECISION 4 per element
DOUBLE PRECISION 8 per element

STRINGS:

3 bytes overhead plus the present contents of the string.

,cesséry, 'BASIC will convert a numeric constant from
:o another. The following rules and examples

1. If a numeric constant of one type is set equal to a
numeric variable of a different type, the number
will be stored as the type declared in the variable
name. (If a string variable 1is set equal to a
numeric value or vice versa, a "Type mismatch"
error occurs.)

Example:

10 a3 = 23.42
20 PRINT A%
RUN

23

2. Durlng expression evaluation, all of the operands

T +YRERT° an arithmetic or relational - operation are

nrlv gonverted to the same degree of precision, 1i.e.,
that of the most precise operand. Also, the result

) of an arithmetic operation is returned to this

“ "Hdegree of precision.
*Examples.

10 D% = 6%/7 The arithmetic was performed

.

GENERAL INFORMATION ABOUT BASIC-80 Page 1-9

RO ZAE

20 PRINT D# in double precision and the

RUN result was returned in D# % gz viome
.8571428571428571 as a double precision value.®:7:: ..

10 D = 6#/7 The arithmetic was performed

20 PRINT D in double precision and the i

RUN result was returned to D (single & =
.857143 precision variable), rounded™and _

printed as a single precision. RSB LR

value. .

3. Logical operators (see Section 1.8.3) convert thelr
operands to 1ntegers and return an integef- reduled’
Operands must be in the range -32768 to 32767 or an
"Overflow" error occurs.

4. wWhen a floating point wvalue is converted to an
integer, the fractional portion is rounde
Example:

10 C% = 55.88
20 PRINT C%
RUN

56

[hH

5. If a double precision variable is assigned a single

precision value, only the first seven digits,
rounded, of the converted number will be. valigd.
This 1is because only seven dlglts of accuracy=were
supplied with the single precision value.{M The

absolute value of the difference “between- “the” "
printed double precision number and the °r12§ ?15:‘f

single precision value will Dbe less than 6"
times the original single precision value. . .

Example:

10 A = 2.04 B
20 B# = A .
30 PRINT A;B# R
RUN Ll

2.04 2.039999961853027

1.8 EXPRESSIONS AND OPERATORS

An expression may be simply a string or numeric constant, “or
a variable, or it may combine constants and variables with
operators to produce a single value. ‘ -

Operators perform mathematical or loglcal operatlons on
values. The operators provided by BASIC-80 may be lelded
into four categories:

GENERAL INFQRMATION ABOUT BASIC-80 Page 1-10

1. .Arithmetic

i g0 o

=, 24b-Relational
3. Logical

&gszunctional

&
P
=

1.8 .1 Arithmetic Operators

The arithmetic operators, in order of precedence, are:

Cpe é;§5; Operation . Sample Expression
= . gv:in - EXponentiation X"y
o FeEess ﬁégéticn -X
* ,/ Multiplication, Floating X*y
Point Division X/Y
+ gy’ Addition, Subtraction X+Y o

B

To <hange the order in which the operations are performed,
use parentheses. Operations within parentheses are
per formed first. Inside parentheses, the usual order of
ope rations is maintained.

i L

Alg%e??l fgiéﬁﬁxpt“eésion - BASIC Expression

X+¥*2

X-¥/2
X*Y/2
(X+Y¥) /2
(X*2)"Y
X (Y7 2)
X*(-Y) Two consecutive
operators must

be separated by ;
parentheses. B

- GENERAL INFORMATION ABOUT BASIC-80 . “ ¢ Page 1EEL IR0

- -

1.8.1.1 Integer Division And Modulus Arithmetic -:":4 ..
Two additional operators are available in Extended and Disk
versions of BASIC-80: Integer division ‘and -:odulus
arithmetic.))

Integer division is denoted by the baskslash (\). The
operands are rounded to integers (must be in the range
-32768 to 32767) before the division is performed, and the
quotient is truncated to an integer.

For example:

10\4 = 2 e
25.68\6.99 = 3 4 ‘ .
: Pramazrys 00T

The precedence of integer division is just after
multiplication and floating point division. D RIS S

Modulus arithmetic is denoted by the operator MOD: ‘It gives
the integer value that is the remainder of an integer
division. For example: s -

10.4 MOD 4 = 2 (10/4=2 with a remainder 2) T C .
25.68 MOD 6.99 = 5 (26/7=3 with a remainder 5)

The precedence of modulus arithmetic is just aftér? integer*
division.

1.8.1.2 oOverflow And Division By Zero -
If, during the evaluation of an expre351on, a diyisiop, &Isy\r;
zero is encountered, the "Division by zero" error messaqé ;}s o
dlsplayed, machine infinity with the sign of the ‘numéfater®
is supplied as the result of the division, and executicon
‘continues. If the evaluation of an exponentlatlcnw~rééﬁ&3§5ww?
in =zero being raised to a negative power, the "Division by
zero" error message is displayed, positive machine infini ty
is supplied as the result of the exponentlatlon, aznd

execution continues. N

g3
If overflow occurs, the "Overflow" error message T is
dlsplaved machine infinity with the algebraically cérrect
sign is supplied as the result, and execution contlnues.

PR

¥

1.8.2 Relational Operators ‘

Relational operators are used to compare two values. The
result of the comparison is either "true" (-1) or "false"
(0). This result mavy then used to make a decision regardimg
program flow. (See IF, Section 2.26.) .

GENERAL INFOGRMATION ABOUT BASIC-80 Page 1-12

Orerator Relation Tested Expression
= Equality X=Y
<> Inequality X<>Y
< Less than X<y
> Greater than X>Y
<= Less than or egqual to A=Y
>= Greater than or equal to I>=Y

(The equal sign 1is also used to assign a value to a
variable. See LET, Section 2.30.)

When arithmetic and relational operators are combined in one
expression, the arithmetic is always performed first. For
example, the expression

X+Y < (T-1)/2

is true if the value of X plus Y is less than the value of
T-1 divided by Z. More examples: -

IF SIN(X)<0 GOTO 1000
IF I MOD J <> 0 THEN K=K+l

1.8.3 Logical Operators

Logical operators perform tests on multiple relations, bit
manipulation, or Boolean operations. The logical operator
returns a bitwise result which is either "true" (not =zero)
or "false" (zero). In an expression, logical operations are
performed after arithmetic and relational operations. The
outcome of a logical operation is determined as shown in the
following table. The operators are listed in order of
preceddnce.

o g PN 2

¥

GENERAL INFORMATION ABOUT BASIC-80 . Page 1-13 .

NOT ’ . g e

X NOT X) PRSI bt PRIt

1 0 . .

0 1 ‘
AND ‘

X Y X AND ¥ . 5

1 1l 1

1 0 0 ,

0 1 0 -

0 0 0 L .
OR .. o

X Y X OR Y o

1 1 1 .

1 0 1 .

0 1 1

0 0 0 : -
XOR

X Y X XOR Y

1 1 0 A

1l 0 1

0 1 1 & w

. 0 0 0 Chugm

IMP Tyomroowy

X Y X IMP Y . : w1

1 1 1

1 8] 0

0 1 1

0 0 1 Hanoam ELE
EQV

X b4 X EQV ¥ Y

1 1 1

1 0 0

0 1 0 8L

0 0 1

[P S Wie A 24
Just as the relational operators can be used to:omake
decisions regarding program flow, logical operators can
connect two or more relations and return a true or false
value to be used in a decision (see IF, Section 2.26). For

example:

IF D<200 AND F<4 THEN 80

IF I>10 OR K<0 THEN 50
IF NOT P THEN 100

. Logical operators work by converting their operands to
sixteen bit, signed, two's complement integers in the range
-32768 to +32767. (If the operands are not in this range,
an error results.) If both operands are supplied as 0 or -1,
logical operators return 0 or -1. The given operation is

-
T e i?ri“v‘{‘"
L ela B

GENEIRAL INFORMATION ABOUT BASIC-80 Page 1-14

performed on these integers in bitwise fashion, i.e., each
bit of the result is determined by the corresponding bits in
the two operands. ;

Thus , it is possible to use logical operators to test bytes
for a particular bit pattern. Por instance, the AND
oper ator may be used to "mask" all but one of the bits of a
status byte at a machine I/O port. The OR operator may be
used to "merge" two bytes to create a particular binary
value. The following examples will help demonstrate how the
log i*éaf dperators work. '

63 AND l6=16 63 = binary 111111 and 16 = binary
10000, so 63 AND 16 = 16

157 A;Nﬁ”l4=l4 15 = binary 1111 and 14 = binary 1110,

f4 & 3T so 15 AND 14 = 14 (binary 1110)
-l”éﬁﬁDsSésg =. =l = binary 1111111111111111 and
wrs fy®e - % 8 = binary 10007 so -1 AND 8 = 8
% osllism ec o
4 OR 2=6-. -~ .. 4 = binary 100 and 2 = binary 10,
' SO 4 OR 2 = 6 (binary 110)
10 OR 10=10 10 = binary 1010, so 1010 OR 1010 =
101C (10)
-1 OR =-2=-1 -1 binary 1111111111111111 and

nou

-2 binary 1111111111111110,
so -1 OR -2 = ~1. The bit
complement of sixteen zeros is
~t«-- Sixteen ones, which is the
two's complement representation of -1l.

NOT X=-(X+1) The two's complement of any integer
is the bit complement plus one.

1.8, #4. - Functional Operators

o -
“dEw To -

A fuzqzthn is used in an expression to call a predetermined
cggzaa;ggn .khat 1is to be performed on an operand. BASIC-80
has w«lntrlnch . functions that reside in the system, such as
SQR .ggsquare root) or SIN (sine). All of BASIC-80's
intr dnsic functions are described in Chapter 3.

BA§&SS-80‘alsot’allows "user defined" functions that are
writ+en By the programmer. See DEF FN, Section 2.11l.

P

PR

e
Toew e 4

mv‘m X
T wnivas

» ol

s

FeRelin

GENERAL INFORMATION ABOUT BASIC-80 - Page 1-15

g w g ey e
P Y S R

1.8.5 String Operations

Strings may be concatenated using +. For example;éf

10 AS$S="FILE" : BS="NAME"

20 PRINT A$ + BS ' e e ae
30 PRINT "NEW " + AS + BS Loapr o om mn
RUN L yorm 1oze
FILENAME Lo W
NEW FILENAME i e
Strings may be compared using the same relational ,.opérators
that are used with numbers:) T
<« 30 Tua

= <> < > <= >=

String comparisodé are made by taking one «characteg:; a&; :a:;
time from each string and comparing the ASCII codes. If all
the ASCII codes are the same, the strings are equal. If the
ASCII codes differ, the lower code number precedésithe’
higher. 1If, during string comparison, the end of one string
is reached, the shorter string is said to be smaller.

Leading and trailing blanks are significant. Examples®®> ¢ =

"AA" < "AB"

"FILENAME" = "FILENAME" ehloED
HX& " > ﬂx# L

"CL " > "CLN

"kg" > "KG" . “ " i 50
"SMYTH" < "SMYTHE" ’

B$ < "9/12/78" where B$ = "8/12/78"

Thus, string comparisons can be used to test string values
or to alphabetize strings. All string constants used in
comparison expressions must be enclosed in quotation marks.

B mv‘i‘:}‘ w‘,f

1.9 INPUT EDITING

If an incorrect character is entered as a line .i&Zbeing -
typed, it can be deleted with the RUBOUT key or with

Control-H. Rubout surrounds the deleted character (&)~ “With -~
backslashes, and Control-H has the effect of backspading °
over a character and erasing it. Once a character(s)": hds’
been deleted, simply continue typing the line as desired. ~ ¢

oy B
=L

To delete a line that is in the process of being typed, type .
Control-U. A carriage return is executed automatically ’
after the line is deleted. ST TP

To correct program lines for a program that is currently in
memory, simply retype the line using the same line number.
BASIC-80 will automatically replace the old 1line with the

new line.

GENYERAL INFORMATION ABOUT BASIC-80 Page 1-16

Mor e sophisticated editing capabilities are provided in the
Ext—=ended and Disk versions of BASIC-80. See EDIT, Section
2.]—6.

To delete the entire program that is currently residing in
memiory, enter the NEW command. (See Section 2.41.) NEW is
ustxally used to clear memory prior to entering a new
progran.

1.1.0 ERROR MESSAGES

If BASIC-80 detects an error that causes program execution
to ,,ter,mmate, an error message is printed. In the 8K
ver sion,, on.ly the error cocde is printed. In the Extended
and Disk versions, the entire error message is printed. For
a complete list of BASIC-80 error codes and error messages,
see Appen&:.x J.

CHAPTER 2

BASIC~-80 COMMANDS AND STATEMENTS .. eopr . -

All of the BASIC-80 commands and statements are described
this chapter. Each description is formatted as follows:’

Format: Shows the correct format for the instructibn, 7 "~
See below for format notation. - AR

Versions: Lists the versions of BASIC-80
in which the instruction is available.

Purpose: Tells what the instruction is used for.

Remarks: Describes in detail how the instruction
is used.

Example: Shows sample programs or program segments

that demonstrate the use of the instruction.

Format Notation
Wherever the format for a statement or command is given, the

following rules apply:

1. 1Items in capital letters must be input as shown.

2. Items in lower case letters -enclosed 1in angle
brackets (< >) are to be supplied by the user.

3. 1Items in square brackets ([]) are optional.

4. All punctuation except angle brackets and square
brackets (i.e., commas, parentheses, semicolons,
hyphens, equal signs) must be included where shown.

5. Items followed by an ellipsis (...) may be repeated
any number of times (up to the length of the line).

BASIC=802COMMANDS AND STATEMENTS Page 2-2

2.1 AQTO
Format = AUTO [<line number>[,<increment>]]

Versions: Extended, Disk

Purpose: To generate a line number automatically after
every carriage return.

Remaris: .:AUTO begins numbering at <line number> and
increments each subsequent line number by
<increment>. The default for both values is 10.

-Tf - <line number> is followed by a comma but

~ ~increment> is not specified, the last increment
. specified in an AUTO command is assumed.

~.+:- T€ AUTO generates a line number that is already
..~ being used, an asterisk is printed after the
number to warn the user that any input will
replace the existing line. However, typing a
7 ‘capriage return immediately after the asterisk
will save the 1line and generate the next line
number.

AUTO is terminated by typing Control-C. The
line in which Control-C is typed is not saved.
After Control-C 1is typed, BASIC returns to
command level.

wh

Exangles .~

ke

AU;Q 100,50 Generates line numbers 100,
T 150, 200 ...

e
T e e wr

e pm 0
PR L

AUTO Generates line numbers 10,
20, 30, 40 ...

BASIC-80 COMMANDS AND STATEMENTS

2.2 CALL

Format:

Version:
Purpose:

Remarks:

Example:

NOTE:

corPagene3r

B
Bt £

-
A
S

CALL <variable name> [(<argument list>)]: R
Extended, Disk L e
To call an assembly language subroutine. e

The CALL statement 1s one way to“vtransfer

w W

program flow to an external subroutine. (Sees~:s

also the USR function, Section 3.40)

<variable name> contains an address that is the
starting point in memory of the subroutine.
<variable name> may not be an array variable
name. <argument 1list> contains the arguments
that are passed to the external subroutine.
<argument list> may contain only variables.

The CALL statement generates the same calling
sequence used by Microsoft's FORTRAN, ‘COBOL and

BASIC compilers.

110 MYROUT=&HDOOO S
120 CALL MYROUT(I,J,K) .

For a BASIC Compiler program, line 110 is not .
needed because the address of MYROUT wilf-w&®>*=

assigned by the linking loader at load time.

et -~ .
T BLE-

BASIC-80 COMMANDS AND STATEMENTS Page 2-4

Formak: , - CEAIN [MERGE] <filename>(,[<line number exp>]
; Fm B {,ALL] [,DELETE<range>]]

Disk
To call a program and pass variables to it from
the current program.

.. <filename> is the name of the program that is
. Called. Example:

CHAIN"PROGL"

"% <line number exp> is a line number or an
£o4 - -expression that evaluates to a line number in
®h4ZdL T ehe called program. It is the starting point
for execution of the called program. If it is
omitted, execution begins at the first line.
Example:

CHAIN"PROGL", 1000

<line number exp> is not affected by a RENUM
command.

With the ALL option, every variable in the
current program is passed to the called program.
If the:' ALL option is omitted, the current
program must contain a COMMON statement to list
the variables that are passed. See Section 2.7.

Example:
CHAIN"PROGL",1000,ALL

If the MERGE option is included, it allows a
subroutine to be brought into the BASIC program
as an overlay. That is, a MERGE operation is
performed with the current program and the
called program. The called program must be an
ASCII file if it is to be MERGEd. Example:

CHAIN MERGE"OVRLAY",1000

After an overlay is brought in, it 1is usually
desirable to delete it so that a new overlay may
be brought in. To do this, use the DELETE

option. Example:
CHAIN MERGE"OVRLAY2",1000,DELETE 1000-5000

The line numbers in <range> are affected by the
RENUM command.

BASIC-80 COMMANDS AND STATEMENTS : : Page 2-5

NOTE: The CHAIN statement with MERGE option leaves the
files open and preserves the current OPTIOMNIBXSE- -~
setting.

NOTE: If the MERGE option is omitted, CHAIN does ‘A&E™-"
preserve variable types or user-defined

functions for use by the chained program. That
is, any DEFINT, DEFSNG, DEFDBL, DEFSTR, or DEFENR-="
statements containing shared variables must be

restated in the chained program. : PERDT T

]

.

NOTE: The Microsoft BASIC compiler does not support
the ALL, MERGE, DELETE, and LINE number &Xp>
options to CHAIN. Thus, the statement format is
CHAIN FILENAME>. If you wish to maintain
compatibility with the BASIC compiler, it 1is
recommended that COMMON be used. to pass
variables and that overlays not be used. The
CHAIN statement leaves the files open during
CHAINing. e

ek

BASIC =8F “GOMMANDS AND STATEMENTS Page 2-6
2.4 CLEAR

Forma%: CLEAR [, [<expressionl>][,<expression2>]]
Versicons: 8R, Extended, Disk

Purpos=se: To set all numeric variables to zero, all string

variables to null, and to close all open files;

and; optionally, to set the end of memory and

» the amount of stack space.

gt soreo

Remar #&s: - <expressionl> is a memory location which, Iif
specified, sets the highest location available

ztzo. for use by BASIC-80.

FEENE 3}
¥

2. - <expression2> sets aside stack space for BASIC.
~5-,The default 1is 256 bytes or one-eighth of the
available memory, whichever is smaller.

5 In previous versions of BASIC=-80, <expressionl>

-z Set the amount of string space, and
_~<expression2> set the end of memory. BASIC-80,
‘- rélease 5.0 and later, allocates string space
dynamically. An "Cut of string space errorc"
occurs only if there is no free memory left for
;. BASIC to use.

. The BASIC Compiler supports the CLEAR statement
with the restriction that EXPRESSIONl> and
EXPRESSION2> must be integer expressions. If a
value of 0 is given for either expression, the
_.appropriate default is used. The default stack
'size is 256 bytes, and the default top of memory
is "the current top of memory. The CLEAR
statement performs the following actions:

* Closes all files
Clears all COMMON and user variables
. Resets the stack and string space
Releases all disk buffers

ExampTes: CLEAR
s+-£ % CLEAR ,32768
CLEAR , ,2000

CLEAR ,32768,2000

BASIC-80 COMMANDS AND STATEMENTS . Pag%&;—'lﬁ

2.5 CLOAD Y cteqob B U
Formats: CLOAD <filename> e gy
CLoOAD? <filename> s T g T
CLOAD* <array name> : ssEmowaLy

Versions: 8K {(cassette), Extended (cassette)

Purpose: To load a program or an array from cassette tape
into memory. BBl uama
Remarks: " CLOAD executes a NEW command before it:loads the

program from cassette tape. <filename> is +the
string expression or the first character of the
string expression that was specified when +the
program was CSAVEd.

CIDAD? verifies tapes by comparing the progr am™
currently in memory with the file on tape thrat
has the same filename. If they are sthe same,
BASIC-80 prints Ok. If not, BASIC-80.prints NO
GOOD. e

CLOAD* loads a numeric array that has been sawed
on tape. The data on tape is loaded into the
array called <array name> specified ‘when t=he
array was CSAVE*ed. oo

CLOAD and CLOAD? are always entered at command
level as direct mode commands. CLOAD* may be
entered at command level or used as a progr am
statement. Make sure the array has been
DIMensioned before it is loaded. ~~ BASIC—80
always returns to command level after a CLOAD,
CLOAD? or CLOAD* is executed. Before a CLOAD
is executed, make sure the cassette recorder 1is
properly connected and in the Play mode, and t=he
tape is possitioned correctly.

See also CSAVE, Section 2.9. T

NOTE: CLOAD and CSAVE are not included in all
implementations of BASIC-80. ‘

Example: CLOAD "MAX2"

Loads file "M" into memory.

[s v, 5
B BLIR

BASIC-80 COMMANDS AND STATEMENTS ' page 2-8

2.6 CLOSE

Format: CLOSE[[4]<file number>[,[#]<file number...>]]
Version: Disk

Purpose: To conclude I/0 to a disk file.

S SLTI CARIRS
Remarks:... <file number> is the number under which the file
“: =-: was OPENed. A CLOSE with no arguments closes

.i= all open files.

.. The association between a particular file and
file number terminates upon execution of a
cle gl CLOSE. The file may then be reOPENed using the
_— same or a different file number; likewise, that
file number may now be reused to OPEN any file.

A CLOSE for a sequential output file writes the
final buffer of output.

The END statement and the NEW command always
CLOSE all disk files automatically. (STOP does
not close disk files.) '

uwiﬁeé Appendix B.

PP Lt

y

.3

[
Moy tE b
R

LA I id

o

BASIC-80 COMMANDS AND STATEMENTS , ~ Page 2-9

2.7 COMMON

Format:
Version:
Purpose:

Remarks:

Example:

NOTE:

COMMON <list of variables>
Disk
To pass variables to a CHAINed program.

The COMMON statement is used in conjunction with

i
e

c s e
CBEOST IS

the CHAIN statement. COMMON statements”&may™sh

appear anywhere in a program, though it is
recommended that they appear at the beginning.
The same variable cannot appear in more than one
COMMON statement. Array variables are specified
by appending "()" to the variable name. If all
variables are to be passed, use CHAIN with the
ALL option and omit the COMMON statement.

100 COMMON A,B,C,D(),GS
110 CHAIN "PROG3",1l0

.
.

.

The BASIC Compiler supports a modified version
of the COMMON statement. The COMMON statement

must appear in a program before any executable™™"

statements. . The current non-executable
statements are:

COMMON

DEFDBL, DEFINT, DEFSNG, DEFSTR
DIM

OPTION BASE

REM

$ INCLUDE

Arrays in COMMON must be declared 1in preceding
DIM statements,

The standard form of the COMMON statement is
referred to as blank COMMON. FORTRAN style
named COMMON areas are also supported; however,
the wvariables are not preserved across CHAINs.
The syntax for named COMMON is as follows:

COMMON /NAME>/ LIST of variables>

where NAME> is 1 to 6 alphanumeric characters
starting with a letter. This 1is useful for
communicating with FORTRAN and assembly language
routines without having to explicityly pass
parameters in the CALL statement.

N o
X i

BASIC-80 COMMANDS AND STATEMENTS Page 2-10

The blank COMMON size and order of variables

must be the same in the CHAINing and CHAINed-to

programs. With the BASIC Compiler, the best way

to insure this 1is to place all blank COMMON

declarations in a single include £file and use

the %INCLUDE statement in each program. For
-~ - - example:

MENU. BAS
10 $INCLUDE COMDEF

®

. 1000 CHAIN "PROGL”

PROGl.BAS
10 $INCLUDE COMDEF

®

. 2000 CHAIN "MENU" s

COMDEF.BAS
100 DIM A(1Q0) ,BS$(200)
110 COMMON I,J,K,A, ()
120-COMMON AS,BS, () ,X,Y,2

BASIC-80 COMMANDS AND STATEMENTS) Eage ;;l}e,
2.8 CONT
Format: CONT

Versions: 8K, Extended, Disk

Purpose: To continue program execution after a Control-C
has been typed, or a STOP or END statement has
been executed.

Remarks: Execution resumes at the point where the break
occurred. If the break occurred after a prompt
from an INPUT statement, execution continues
with the reprinting of the prompt (? or prompt
string).

CONT is usually used in conjunction with STOP
for debugging. When execution 1is stopped,
intermediate values may be examined and changed
using direct mode statements. Execution may be
resumed with CONT or a direct mode GOTO, which
resumes execution at a specified line number.
With the Extended and Disk versions, CONT may be
used to continue execution after an error.

CONT is invalid if the program has been edited
during the break. In 8K BASIC-80, execution
cannot be CONTinued if a direct mode error has
occurred during the break.

Example: See example Section 2.61, STOP.

3 *
et o Nk £

P o P
Loy e o

BASIC-80 COMMANDS AND STATEMENTS Page 2-12

2.9 CSAVE

Formats: CSAVE <string expression>
,;ﬁCSAVE* <array variable name>

Yoo ooy
Ver £iéns: " ‘8K (cassette), Extended (cassette)

Purgggseimm To save the program or an array currently in
e LY memory on cassette tape.
MTAC A

Remaffléé’g “s Each program or array saved on tape is
fﬁ&>b“; ‘identified by a filename. When the command

"CSAVE <string expression> is executed, BASIC-80

£/ saves the program currently in memory on tape
- and uses the first character in <string

“ expression> as the filename. <string

“-! expression> may be more than one character, but

" ‘only the first character 1is used for the
filename. _

When the command CSAVE* <array variable name> is
executed, BASIC-80 saves the specified array on
tape. The array must be a numeric array. The
elements of a multidimensional array are saved
- with the leftmost subscript changing fastest.

=~ CSAVE may be used as a program statement or as a
»+: direct mode command.

Before a CSAVE or CSAVE* is executed, make sure
' "the cassette recorder is properly connected and
. .+»in the Record mode.

Seé also CLOAD, Section 2.5.

NOTE%Q{;?iQ CSAVE and CLOAD are not included in all
implementations of BASIC-80.

Example: CSAVE "TIMER"

Saves the program currently in memory on
cassette under filename "T".

BASIC-80 COMMANDS AND STATEMENTS . : - Page 2—13

2.10 DATA

Format: DATA <list of constants>
Versions: 8K, Extended, Disk

Purpose: To store the numeric and string constants that
are accessed by the program's READ statement(s)., ..
(See READ, Section 2.54) -

Remarks: DATA statements are nonexecutable and may be
placed anywhere in the program. A DATA
statement may contain as many constants as .will,.=z
fit on a line (separated by commas), and any
number of DATA statements may be used in a
program. The READ statements access the DATA
statements in order (by 1line number) and +the
data contained therein may be thought of as one
continuous list of items, regardless of how many
items are on a line or where the lines are

placed in the program.

<list of constants> may contain. numeric
constants in any format, i.e., fixed point,
floating point or integer. (No numer ic
expressions are allowed in the list.) String
constants in DATA statements must be ‘surrounded
by double quotation marks only if they contain
commas, c¢olons or significant leading or
trailing spaces. Otherwise, quotation marks are
not needed.

The variable type (numeric or string) given in
the READ statement must agree with t=he

corresponding constant in the DATA statement.

DATA statements may be reread from the beginning
by use of the RESTORE statement (Section 2.37) $TTON

Example: See examples in Section 2.54, READ. B
: s LgTsyt

o
Shek

BASIC-80 COMMANDS AND STATEMENTS A Page 2-14

2.11 DEF FN

Format: DEF FN<name>[(<parameter list>)]=<function definition>

Versipons: 8K, Extended, Disk

Purpose: To define and name a function that is written by
the user.)
Remarks: <name> must be a legal variable name. This

name, preceded by FN, becomes the name of the
function. <parameter list> is comprised of
those variable names in the function definition
that are to be replaced when the function |is
called. . The items in the list are separated by
commas. <function definition> is an expression
that performs the operation of the function. It
is limited to one line. Variable names that
appear in this expression serve only to define
the function; they do not affect program
variables that have the same name. A variable
name used in a function definition may or may
not appear in the parameter list. If it does,
the value of the parameter is supplied when the
function 1is called. Otherwise, the current
value of the variable is used.

The wvariables in the parameter 1list represent,
on a one-to-one basis, the argument variables or
values that will be given in the function call.
(Remember, in the 8K version only one argument
is allowed in a function call, therefore the DEF
FN statement will contain only one variable.)

In Extended and Disk BASIC-80, user-defined
functions may be numeric or string; in 8K,
user-defined string functions are not allowed.
If a type is specified in the function name, the
value of the expression is forced to that type
before it is returned to the calling statement.
If a type is specified in the function name and
the argument type does not match, a "Type
mismatch" error occurs.

@

A DEF FN statement must be executed before the
function it defines may be called. If a
function is called before it has been defined,
an "Undefined user function®™ error occurs. DEF
FN is illegal in the direct mode.

BASIC-80 COMMANDS AND STATEMENTS

Example:

oI DEeDTRAT
410 DEF FNAB(X,Y)=X"3/Y"2 o
420 T=FNAB(I,J)
) PR A n s

Line 410 defines the function FNAB. ' ¢&¢Thes 18V
function is called in line 420. i

-
W Aen W

A
el
5.8
b

i
vE
HE
b
o

BASIC-80 COMMANDS AND STATEMENTS Page 2-16

2.12 DEFINT/SNG/DBL/STR

Format: DEF<type> <range(s) of letters>
where <type> is INT, SNG, DBL, or STR

Extended, Disk

To declare variable types as integer, single
precision, double precision, or string.

A DEFtype statement declares that the variable

names beginning with the letter(s) specified

will be that type variable. However, a type

declaration character always takes precedence

over a DEFtype statement in the typing of a
variable.

RE & no type declaration statements are
- encountered, BASIC-80 assumes all wvariables
without declaration characters are single
precision variables.

Examples: 10 DEFDBL L-P All variables beginning with
the letters L, M, N, O, and P
will be double precision
variables.

10 DEFSTR A All variables beginning with
the letter A will be string
variables.

10 DEPINT I-N,W-2
All variable beginning with
the letters I, J, K, L, M,
N, W, X, ¥, Z will be integer
variables.

BASIC—SOVCOMMANDS.AND4STATEMENTS S . Page 2-17

¥
o
¥
P
i
3

2.13 DEF USR

Format:
Versiocns:

Purpose:

Remarks:

Example:

L3

DEF USR[<digit>]=<integer expression>

§

J

#
b
5}

Extended, Disk

To specify the starting address of an assembly
language subroutine. T E T

<digit> may be any digit from 0 to 9. The digit:-~
corresponds to the number of the USR routine
whose address is being specified. If <digit> is -
omitted, DEF USR0O 1is assumed. The value® of =7
<integer expression> is the starting address of
the USR routine. See Appendix C, Assembly
Language Subroutines.

Any number of DEF USR statements may appear in a
program to redefine subroutine starting
addresses, thus allewing access to as many
subroutines as necessary.

Foag

. g A

200 DEF USRO=24000

" 210 X=USR0(Y"2/2.89)

-

P e
N ;
R e i e

BASIC-80 COMMANDS AND STATEMENTS Page 2-;18

2.14 DELETE

Format: DELETE(<line number>]{-<line number>]
Versions: Extended, Disk
Purééggill To delete program lines.

'BASIC-80 always returns to command level after a
~ DELETE is executed. If <line number> does not
exist, an "Illegal function call" error occurs.

DELETE 40 Deletes line 40

DELETE 40-100 Deletes lines 40 through
100, inclusive

s 4+ =~ DELETE-40 Deletes all lines up to
: and including line 40

BASIC-80 COMMANDS AND STATEMENTS , Page 2-19

2.15 DIM

Format:
Versions:

Purpose:

Remarks:

Example:

DIM <list of subscripted variables>

8K, Extended, Disk

To specify the maximum values for array varia

3@9 . ‘;g::

subscripts and allocate storage accordingly. ®&%%i.

£

If an array variable name is used without a . :=DIMr«=
statement, the maximum value of its subscript(s)
is assumed to be 10. If a subscript 1is used
that is greater than the maximum specified, a
"Subscript out of range" error occurs. :::Thes: I
minimum value for a subscript 1is always O,
unless otherwise specified with the OPTION BASE

statement (see Section 2.46).

The DIM statement sets all the elements of the
specified arrays to an initial value of zero.

10 DIM A(20)

20 FOR I=0 TO 20
30 READ A(I)

40 NEXT I

.

BASIC—80 COMMANDS AND STATEMENTS Page 2-20

" EDIT <line number>

Versions: = Extended, Disk

PurpdSe: To enter Edit Mode at the specified line.
Remark s: In Edit Mode, it is possible to edit portions of

a line without retyping the entire line. Upon
entering Edit Mode, BASIC-80 types the line
number of the line to be edited, then it types a
space and waits for an Edit Mode subcommand.

Edit Mode Subcommands

. Bdit Mode subcommands are used to move the
cursor or to insert, delete, replace, or search
for text within a line. The subcommands are not
.echoed. Most of the Edit Mode subcommands may
be preceded by an integer which causes the

. command to be executed that number of times. -

_ When a preceding integer is not specified, it is

‘assumed to be 1.

W fd -

)
ka3

“?" Bdit Mode subcommands may be categorized
according to the following functions:

“¥7- 1, Moving the cursor

ii? 2. Inserting text
®FES 7 3, peleting text
4. Finding text

‘ 5. Replacing text
e 2
Zewrzs g, Ending and restarting Edit Mode
aoam med NOTE

: . In the descriptions that follow, <ch>
Pl es represents any character, <text>
friz&v. . ¢ represents a string of characters of
TE @«r "3 arbitrary length, [i] represents an

optional integer (the default is 1), and
$ represents the Escape (or Altmode)
key.

BASIC-80 COMMANDS AND STATEMENTS ~ Ppage 2-21

1.

Moving the Cursor

Space

Rubout

Use the space bar to move the cursor ¢tdiitheé!l.

right. [i]Space moves the cursor i spaces to
the right. Characters are printed as you space

g ger ey B
i

over them. Rl N 0

In Edit Mode, [i]Rubout moves the cursér©:i
spaces to the left (backspaces). Characters are
printed as you backspace over them. PERDT

57 oy

beed

swa

ofy

e # e bad ki T

Inserting Text

I

I<text>$ inserts <text> at the current cursor
position. The inserted characters are printed
on the terminal. To terminate insertion, type
Escape. If Carriage Return is typed during an
Insert command, the effect is the same as typing
Escape and then Carriage Return. During an
Insert command, the Rubout, Delete, or
Underscore key on the terminal may be used to
delete characters to the 1left of the cursor.
Rubout will print out the characters as you
backspace over them. Delete and Underscore will
print an Underscore for each character that you
backspace over. If an attempt is made to insert
a character that will make the line longer than
255 characters, a bell (Control-G) is typed and
the character is not printed.

The X subcommand is used to extend the line. X
moves the cursor to the end of the line, goes
into insert mode, and allows insertion of text
as if an Insert command had been given. When
you are finished extending the line, type Escape
or Carriage Return. i

Deleting Text

D

[i]D deletes i characters to the right of the
cursor. The deleted <characters are echoed
between backslashes, and the cursor is
positioned to the right of the last character
deleted. If there are fewer than i characters
to the right of the cursor, iD deletes the
remainder of the line. -

H deletes all characters to the right of the
cursor and then automatically enters insert
mode. H is useful for replacing statements at
the end of a line.

Finding Text

S

The subcommand [i]S<ch> searches for the ith

BASIC-80 COMMANDS AND STATEMENTS Page 2-22

occurrence of <ch> and positions the cursor
before it. The character at the current cursor
position is not included in the search. If <ch>
is not found, the cursor will stop at the end of
the line. All characters passed over during the
search are printed.

The subcommand [i]R<ch> is similar to [i]S<ch>,
except all the characters passed over in the
search are deleted. The cursor 1is positioned
before <ch>, and the deleted characters are
enclosed in backslashes. :

The subcommand C<ch> changes the next character
to <ch>. If you wish to change the next i
characters, use the subcommand iC, followed by i
characters. After the ith new character is
typed, change mode is exited and you will return
to Edit Mode.

Typing Carriage Return prints the remainder of

- the 1line, saves the changes you made and exits

Edit Mcde.

The E subcommand has the same effect as Carriage
Return, except the remainder of the line is not
printed.

" The Q subcommand returns to BASIC-80 command

level, without saving any of the changes that

" ‘were made to the line during Edit Mode.

" The I, subcommand lists the remainder of the line

(saving any changes made so far) and repositions
the cursor at the beginning of the line, still
in Edit Mode. L is usually used to list the
line when you first enter Edit Mode.

The A subcommand lets you begin editing a line
over again. It restores the original line and
repositions the cursor at the beginning.

NOTE

If BASIC-80 receives an unrecognizable
command or 1illegal character while in
Edit Mode, it prints a bell (Control-G)
and the command or character is ignored.

'BASIC-80 COMMANDS AND STATEMENTS i . Page 2-23

7 P TN
N Pide w0 202
- LB 2 e

Syntax Errors

When a Syntax Error is encountered during
execution of a program, BASIC-80 automatically
enters Edit Mode at the 1line that caused the
error. For example:

10 K = 2(4)

RUN -
?Syntax error in 10 -
10

When vyou finish editing the 1line and type
Carriage Return (or the E subcommand), BASIC-80
reinserts the line, which causes all variable
values to be lost. To preserve the variable
values for examination , first exit Edit Mode
with the Q subcommand. BASIC-80 will return to

command level, and all variable values will be
preserved.

Contrbl—A

To enter Edit Mode on the line you are currently
‘ typing, type Control-A. BASIC-80 responds with
- a carriage return, an exclamation point (!) . and
a space. The cursor will be positioned at the
first character in the line. Proceed by typing
an Edit Mode subcommand.

=
i

NOTE

Remember, if you have 3just entered a
line and wish to go back and edit it,
the command "EDIT." will enter Edit Mode
at the current line. (The line number
symbol "." always refers to the current -

line.)

i s oy
L ;

BASIC-80
2.17 END

Format:

Versions:

Purpose:

Example:

COMMANDS AND STATEMENTS ‘page 2-24

END
8R, Extended, Disk

To terminate program execution, close all files
and return to command level.

END statements may be placed anywhere in the
program to terminate execution. Unlike the STOP
statement, END does not cause a BREAK message to
be printed. An END statement at the end of a
program is optional. BASIC-80 always returns to
command level after an END is executed.

520 IF K>1000 THEN END ELSE GOTO 20

BASIC-80 COMMANDS AND STATEMENTS o , ~Page 2

2.18 ERASE

Format:
Versions:
Purpose:

Remarks:

NOTE:

Example:

[
. sme M o, B
[Y

ERASE <list of array variables>
Extended, Disk L
To eliminate arrays from a program. o N

Arrays may be redimensioned after they are
ERASEd, or the previously allocated array space
in memory may be used for other purposes. If ‘an” s
attempt is made to redimension an array without
first ERASEing it, a "Redimensioned array" error

occurs.

The Microsoft BASIC compiler does not support
ERASEO .o 7»:»!1;,« [Tty

.

450 ERASE A,B
460 DIM B(99)

> p g
&3

BASIC —80 COMMANDS AND STATEMENTS Page 2-26

2.19 ERR AND ERL VARIABLES

When an error handling subroutine 1is entered,
the variable ERR contains the error code for the
error, and the variable ERL c¢ontains the line
TEeZ7... number of the line in which the error was
B o detected. The ERR and ERL variables are usually
used in 1IF...THEN statements to direct program
flow in the error trap routine.

.. statement, use IF 65535 = ERL THEN ...
. Otherwise, use

@ Ioan o If the statement that caused the error was a
sheoe direct mode statement, ERL will contain 65535.

Pl To test if an error occurred in a direct
R

error code THEN ...

IF ERR =
:iigéﬁ ; IF ERL = line number THEN ...
Jes T , : : i
s e If the line number is not on the right side of
I . the relational operator, it cannot be renumbered
mmd+ -~ by RENUM. Because ERL and ERR are reserved
e e variables, neither may appear to the left of the

equal sign in a LET (assignment) statement.
BASIC-80's error codes are listed in Appendix J.
(For Standalone Disk BASIC error ccdes, see

Appendix H.)

BASIC-80 CCMMANDS AND STATEMENTS ’ : ‘Page 2-27

2.20 ERROR

Format:
Versions:

Purpose:

Remarks:

Example 1l:

§eF

ERROR <integer expression>

Extended, Disk

1) To simulate the occurrence of a BASIC-80
error; or 2) to allow error codes to be
defined by the user.

The value of <integér expression> must be
greater than 0 and less than 255. If the value
of <integer expression> equals an error code
already in use by BASIC-80 (see Appendix J), the
ERROR statement will simulate the occurrence of
that error, and the corresponding error message
will be printed. (See Example 1l.)

To define your own error code, use a value that
is greater than any used by BASIC-807s error
codes. (It is preferable to use the highest
available values, so compatibility may be
maintained when more error codes are added to
BASIC-80.) This user-defined error code may then
be conveniently handled in an error trap
routine. (See Example 2.)

If an ERROR statement specifies a code for which
no error message has been defined, BASIC-80
responds with the message UNPRINTABLE ERROR.
Execution of an ERROR statement for which there
is no error trap routine causes an error message
to be printed and execution to halt.

LIST

10 s 10

20T 5

30 ERROR § + T

40 END

Ok

RUN

String too long in line 30

0n

Or, in direct mode:

Ok
ERROR 15 (you type this line)
String too long (BASIC-80 types this line)

Ok

P e -
LT

BASIC—-80 COMMANDS AND STATEMENTS Page 2-28

Example 2: .

110 ON ERROR GOTO 400
120 INPUT "WHAT IS YOUR BET":B
o 130 IF B > 5000 THEN ERROR 210
- I .

400AIF ERR = ZlO’THEN PRINT "HOUSE LIMIT IS $5000"
410 IF ERL = 130 THEN RESUME 120 :

et 2
"‘.,’ A
Eel

o
wd
i
oL

§
?

LR
W10

BASIC-80 COMMANDS AND STATEMENTS - , Page 2-29

2.21 FIELD

Format: FIELD[#]<file number>,<field width> AS <string variable>...
Version: Disk
Purpose: To allocate space for variables in a random file
buffer.
Remarks: To get data out of a random buffer after a GET

or to enter data before a PUT, a FIELD statement
must have been executed.

<file number> is the number under which the file
was OPENed. <field width> 1is the number of
characters to be allocated to <string variable>.
For example,

FIELD 1, 20 AS N$, 10 AS IDS$, 40 AS ADDS

allocates the first 20 positions (bytes) in the
random file buffer to the string variable N§,
the next 10 positions to ID$, and the next 40
positions to ADDS. FIELD does NOT place any
data in the random file buffer. (See LSET/RSET
and GET.)

The total number of bytes allocated in a FIELD
statement must not exceed the record length that
was specified when the file was OPENed.
Otherwise, a "Field overflow" error occurs.
(The default record length is 128.)

Any number of FIELD statements may be executed
for the same file, and all FIELD statements that
have been executed are in effect at the same

time.
Example: See Appendix B.
NOTE: Do not use a FIELDed variable name in an INPUT

or LET statement. Once a variable name is
FIELDed, It points to the correct place in the
random file buffer. If a subsequent INPUT or
LET statement with that variable name is
executed, the variable's pointer is moved to

string space.

BAS TC-80 COMMANDS AND STATEMENTS Page 2-30

Liw

- =FOR. . . NEXT

FOR <variable>=x TO y [STEP z]

.

NEXT [<variable>][,<variable>...]

where %, v and z are numeric expressions.

Ver sions: 8K, Extended, Disk

Purpose: To allow a series of instructions to be
" performed in a loop a given number of times.

Remarks: <variable> is used as a counter. The first
numeric expression (x) is the initial value of
the counter. The second numeric expression (Y)
is the final value of the counter. The program
lines following the FOR statement are executed
until the NEXT statement is encountered. Then
the counter is incremented by the ~amount
specified by STEP. A check is performed to see
if the value of the counter is now greater than
the final value (vy). If it is not greater,
BASIC~80 branches back to the statement after
the FOR statement and the process is repeated.
If it is greater, execution continues with the
statement following the NEXT statement. This is
a FOR...NEXT loop. If STEP 1is not specified,
the increment is assumed to be one. If STEP is
negative, the final value of the counter is set
to be less than the initial value. The counter
is decremented each time through the loop, and
the loop is executed until the counter is less
than the final value.

The body of the loop is skipped if the initial
value of the 1loop times the sign of the step
exceeds the final value times the sign of the

step.

Nested Loops

FOR...NEXT loops may be nested, that 1is, a
FOR...NEXT loop may be placed within the context
of another FOR...NEXT loop. When 1loops are
nested, each loop must have a unique variable
name as its counter. The NEXT statement for the
inside 1loop must appear before that for the
outside loop. If nested loops have the same end
point, a single NEXT statement may be used for

all of them.

The variable(s) in the NEXT statement may be

'BASIC-80 COMMANDS AND STATEMENTS Page 2-31

omitted, in which case the NEXT statement will
match the most recent FOR statement. If a -NEXT -
statement is encountered before its
corresponding FOR statement, a "NEXT without
FOR" error message 1is issued and execution”i§7=°
terminated.

Example 1l: 10 K=10
20 FOR I=1 TO K STEP 2
30 PRINT I;

40 K=K+10

50 PRINT K =
60 NEXT .

RUN \ e e
l 20 e e A
3 30
5 40 e e
7 50 SR L3 AR5
9 60

Ok

Example 2: 10 J=0
20 FOR I=1 TO J

. 30 PRINT I
40 NEXT I
In this example, the loop does not execute

because the initial wvalue of the loop exceeds
the final value.

Example 3: 10 I=5
20 FOR I=1 TO I+5
30 PRINT I;

40 NEXT
RUN

1 2 3 4 5 6 7 8 9 10
Ok

In this example, the loop executes ten times.
The final value for the loop variable is always
set before the initial wvalue 1is set. (Note:
Previous versions of BASIC-80 set the initial
value of the loop variable before setting the
final value; i.e., the above loop would have
executed six times.)

PPN

[o

BASIC~-80 COMMANDS AND STATEMENTS Page 2-32

2.23 GET

Format:
Vers ion:

Purpose:

Remaxzhks:

S

GET [(4]<file number>[,<record number>]
Disk

To read a record from a random disk f£ile into a
random buffer.

<file number> is the number under which the file
was OPENed. If <record number> is omitted, the
next record (after the last GET) is read into
the buffer. The largest possible record number
is 32767.

See Appendix B.

After a GET statement, INPUT$ and LINE INPUT#
may be done to read characters from the random
file buffer.

BASIC-80 COMMANDS AND STATEMENTS ' ‘ Page 2-33

AT e e e T

2.24 GOSUB...RETURN

Format:

Versions:
Purpose:

Remarks:

Example:

GOSUB <line number>

: CEERTL

RETURN

8K, Extended, Disk

To branch to and return from a subroutine. ::zs3azmss

<line number> 1is the first 1line of the
subroutine.

A subroutine may be called any number of times

in a program, and a subroutine may be called#

from within another subroutine. Such nesting of

subroutines is limited only by available memory:.irl.:

The RETURN statement(s) in a subroutine cause
BASIC-80 to branch back to the statement
following the most recent GOSUB statement. A
subroutine may contain more than one RETURN
statement, should logic dictate a return at
different points in the subroutine. Subroutines
may appear anywhere in the program, but it is
recommended that the subroutine be readily
distinguishable from the main program. To
prevent inadvertant entry into the subroutine,
it may be preceded by a STOP, END, or GOTO
statement that directs program control around
the subroutine.

10 GOSUB 40

20 PRINT "BACK FROM SUBROUTINE"
30 END

40 PRINT "SUBROUTINE";
50 PRINT " IN";

60 PRINT " PROGRESS"
70 RETURN

RUN

SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE
ok

e
o oY
& k.

A

BASTC=80 COMMANDS AND STATEMENTS page 2-34

2.25 GOTO

epen
AR TS P

Format: GOTO <line number>
Versions: 8R, Extended, Disk

Purpose: To branch unconditionally out of the normal
program sequence to a specified line number.

Remarks: If <line number> 1is an executable statement,
s that statement and those following are executed.
T If it is a nonexecutable statement, execution

proceeds at the first executable statement

e encountered after <line number>.

Example: LIST _

" 10 READ R

B 20 PRINT "R =";R,

S 30 A = 3.14*R72

pme 40 PRINT "AREA =";A

- 50 GOTO 10

60 DATA 5,7,12

78.5
153.86
452.16

c =5 AREA
2. R =7 AREA
R = 12 AREA
?20ut of data in 10
ok

PP om0 Oal b

wouu

PR3

BASIC-80 COMMANDS AND STATEMENTS . Page 2;§§3;{‘

o T O e

2.26 IF...THEN([...ELSE] AND IF...GOTO s
Format: IF <expression> THEN <statement(s)> | <line number>

[ELSE <statement(s)> | <line number>]
Format: IF <expression> GOTO <line number> aned

[ELSE <statement(s)> | <line number>]

Versions: 8K, Extended, Disk o
EYLETIEY
NOTE: The ELSE clause is allowed only in Extended and
Disk versions.
Purpose: To make a decision regarding program flow based
on the result returned by an expression. s leyme sy
Remarks: If the result of <expression> is not 2zero, the

THEN or GOTO clause is executed. THEN may be
followed by either a line number for branching
or one or more statements to be executed. GOTO
is always followed by a line number. If the
result of <expression> is zero, the THEN or GOTO
clause is 1ignored and the ELSE clause, if
present, is executed. Execution continues with
the next executable statement. (ELSE is allowed
only in Extended and Disk versions.) Extended
and Disk versions allow a comma before THEN.

Nesting of IF Statements

In the Extended and Disk versions,
IF...THEN...ELSE statements may be nested.
Nesting is limited only by the 1length of the-
line. For example

IF X>Y THEN PRINT "GREATER" ELSE IF Y>X
THEN PRINT "LESS THAN" ELSE PRINT "EQUAL"

is a legal statement. If the statement does not
contain the same number of ELSE and THEN
clauses, each ELSE is matched with the <closest
unmatched THEN. For example

IF A=B THEN IF B=C THEN PRINT "A=C"
ELSE PRINT "A<>C"

will not print "A<>C" when A<>B.

If an IF...THEN statement is followed by a line
number in the direct mode, an "Undefined line"
error results unless a statement with the
specified line number had previously been
entered in the indirect mode.

oy .
&5 5 e &
2o

BASIC—-80 COMMANDS AND STATEMENTS Page 2-38

Examples: 10 INPUT X
20 PRINT X "SQUARED IS" X"2
30 END
RUN
?2 5 (The 5 was typed in by the user
in response to the gquestion mark.)
5 SQUARED IS 25
Ck

o

LIST
N 10 PI=3.14
. 20 INPUT "WHAT IS THE RADIUS";R
o n 30 A=PI*R"2

40 PRINT "THE AREA OF THE CIRCLE IS";A
50 PRINT
60 GOTO 20

WHAT IS THE RADIUS? 7.4 (User types 7.4)
THE AREA OF THE CIRCLE IS 171.946

mi ol WHAT IS THE RADIUS?

Ee g Te R etc‘
ariem, P
S o < . .

i

AL G e ip

oy
£

-

AR N,
1y

VLA Wi Dy,

b

H e B R

'BASIC-80 COMMANDS AND STATEMENTS - page 2-37
SiEe Ll

-
S

2.27 INPUT

Format:
Versions:

Purpose:

Remarks:

[

INPUT(;] [<"prompt string">;]<list of variables>
8K, Extended, Disk

To allow input from the terminal during program
execution.

When an INPUT statement is encountered, program
execution pauses and a question mark is printed
to indicate the program is waiting for data. If
<"prompt string"> 1is included, the string is
printed before the question mark. The required

if ’?

e g, s

data is then entered at the terminal. BLgmay

A comma may be used instead of a semicolon after

the prompt string to suppress the guestion mark.
For example, the statement INPUT "ENTER

§1¢

BIRTHDATE",BS will print the prompt with“n&®&s?

question mark.

If INPUT is immediately followed by a semicolon,
then the <carriage return typed by the user to
input data does not echo a carriage return/line

feed sequence.

The data that is entered 1is assigned to the
variable(s) given 1in <variable 1list>. The
number of data items supplied must be the same
as the number of variables in the list. Data
items are separated by commas. “

The variable names in the list may be numeric or
string variable names (including subscripted
variables). The type of each data item that is
input must agree with the type specified by the
variable name. {Strings input to an INPUT
statement need not be surrounded by gquotation

marks.)

Responding to INPUT with too many or too few
items, or with the wrong type of value (numeric
instead of string, etc.) causes the messsage
"2Redo from start" to be printed. No assignment
of input values 1is made until an acceptable

response is given.

In the 8K version, INPUT is 1illegal in the
direct mode.

& L OmEnT

o g

BASTC-80 COMMANDS AND STATEMENTS page 2-36

NOTE: When using IF to test equality for a value that
is the result of a floating point computation,

-». - remember that the internal representation of the

' value may not be exact. Therefore, the test
should be against the range over which the
accuracy of the value may vary. For example, to
test a computed variable A against the value

1.0, use:

- This test returns true if the value of A is 1.0
ER with a relative error of less than 1.0E-6.

Example l1: 200 IF I THEN GET#1,I

s This statement GETs record number I if I is not:
Zero.

Ié 2: 100 IF(I<20)*(I>10) THEN DB=1979-1:GOTO 300
110 PRINT "OUT OF RANGE"

.
£ -

In this example, a test determines if I |is

greater than 10 and less than 20. If I is in
ok this range, DB is calculated and execution
BT branches to line 300. If I 1is not in this
i range, execution continues with line 110.

)
e B e

Exarmple 3: 210 IF IOFLAG THEN PRINT A$ ELSE LPRINT A$

wem o This statement causes printed output to go
e either to the terminal or the line printer,
: depending on the value of a variable ({IOFLAG) .
Tf TOFLAG 1is zero, output goes to the line
printer, otherwise output goes to the terminal.

BASIC-80 COMMANDS- AND STATEMENTS - : Page 2-39

2.28 INPUT#

Format:
Version:

Purpose:

Remarks:

Example:

INPUT#<file number>,<variable list>
Disk

To read data items from a sequential disk file
and assign them to program variables.

<file number> 1is the number used when the file

was OPENed for input. <variable list> contains
the variable names that will be assigned to the
items in the file. (The variable type must
match the type specified by the variable name.)

With INPUT#, no question mark is printed, as

with INPUT.

The data items in the file should appear just as
they would if data were being typed in response
to an INPUT statement. With numeric values,
leading spaces, carriage returns and line feeds
are ignored. The first character encountered
that is not a space, carriage return or line
feed is assumed to be the start of a number.
The number terminates on a space, carriage
return, line feed or comma.

If BASIC-80 is scanning the sequential data file
for a string item, leading spaces, carriage
returns and line feeds are also ignored. The
first character encountered that is not a space,
carriage return, or line feed is assumed to be
the start of a string item. If this first
character is a quotation mark ("), the string
item will consist of all characters read between
the first quotation mark and the second. Thus,
a quoted string may not contain a quotation mark
as a character. If the first character of the
string is not a gquotation mark, the string is an
unquoted string, and will terminate on a comma,
carriage or line feed (or after 255 characters
have been read). If end of file is reached when
a numeric or string item is being INPUT, the
item is terminated.

See Appendix B.

BASTC-80 COMMANDS AND STATEMENTS Page 2-40

2.29 RILL

Format:
Version:
Purpose:

Remarks:

Example:

KILL <filename>
Disk
To delete a file from disk.

If a RILL statemeﬁt-is given for a file that is
currently OPEN, a "File already open" error
occurs. « . _

RILL is wused for all types of disk files:
program files, random data files and sequential
data files.

200 RILL "DATAL"

See also Appendix B.

BASIC-80 COMMANDS AND STATEMENTS - C : - Page 2-4]

e
5 T

{w

2.30 LET L e -
Format: - [LET] <variable>=<expression> i
Versions: 8K, Extended, Disk iz asy
Purpose: To assign the value of an expression to.a.. -
variable. .
Remarks: " Notice the word LET is optional, i.e., the edﬁgfﬁﬁi

sign is sufficient when assigning an expression
to a variable name.

Example: 110 LET D=12
120 LET E=12"2
130 LET F=12"4
140 LET SUM=D+E+F R

or

110 Dp=12

120 E=12"2
130 F=12"4
140 SUM=D+E+F

BASITC-80 COMMANDS AND STATEMENTS Page 2-42

2.31 LINE INPUT

Format: LINE INPUT(;](<"prompt string">;]<string variable>

Ver s:.cms Extended, Disk

Purpose: To input an entire line (up to 254 <characters)
to a string variable, without the use of
delimiters.

Remavrks: The prompt string is a string literal that is

printed at the terminal before input is
accepted. A question mark is not printed unless
it is part of the prompt string. All input from
the end of the prompt to the carriage return |is
E assigned to <string variable>. EHowever, if a
= line feed/carriage return segquence (this order
only) is encountered, both characters are
v echoed; but the carriage raturn is ignored, the
S line feed is put into STRING variable>, and data
: ' input continues.

If LINE INPUT is immediately followed by a
semicolon, then the carriage return typed by the
user to end the input line does not echo a
carriage return/line feed sequence at the
terminal.

A LINE INPUT may be escaped by typing Control-C.
BASIC-80 will return to command level and type
Ok. Typing CONT resumes execution at the LINE
INPUT.

¢;§§§§§gle: See Example, Section 2.32, LINE INPUT#.

BASIC-80 COMMANDS AND STATEMENTS Page 2-43

5
&8
i

2.32 LINE INPUT#

Format: LINE INPUT#<file number>,<string variable>

Version: Disk R

Purpose: To read an entire line (up to 254 characters),. ..
without delimiters, from a sequential disk data
file to a string variable. moT wh

Remarks: <file number> is the number under which the file
was OPENed. <string variable> is the variable

name to which the line will be assigned. LINE tiw}
INPUT%# reads "all characters in the sequential
file up to a carriage return. It then skips
over the carriage return/line feed sequence, and

the next LINE INPUT# reads all characters up to

the next carriage return. (If a line
feed/carriage return sequence is encountered, it

is preserved.)

LINE INPUT# is especially useful if each line of
a data file has been broken into fields, or if a
BASIC-80 program saved in ASCII mode is being
read as data by another program. .

Example: 10 OPEN "O",1,"LIST"
20 LINE INPUT "CUSTOMER INFORMATION? ";CS$S
30 PRINT #1, CS$
40 CLOSE 1
50 OPEN "I",l,"LIST"
60 LINE INPUT #1, CS$
70 PRINT C$
80 CLOSE 1
RUN s
CUSTOMER INFORMATION? LINDA JONES 234,4 ~MEMPHIS
LINDA JONES 234,4 MEMPHIS
ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-44

2.33 LIST

Format 1l:
Versions:
Format 2:
Versions:

Purpose:

Remarks:

LIST [<line number>]

8R, Extended, Disk

LIST [<line number>[-[<line number>]]]
Extended, Disk

To list all or part of the program currently in
memory at the terminal. o .

BASIC-80 always returns to command level after a

" LIST is executed.

Format l: If <line number> 1is omitted, the
program 1is listed beginning at the lowest line
number. (Listing is terminated either by the
end of the program or by typing Control=-C.) If
<line number> is included, the 8K version will
list the program beginning at that line; and
the Extended and Disk versions will 1list only

the specified line. ‘ ’ '

Format 2: This format allows the following
options:

1. If only the first number is specified, that
line and all higher-numbered lines are

listed.

2. If only the second number is specified, all
lines from the beginning o©f the program
through that line are listed.

3. If both numbers are specified, the entire
range is listed.

BASIC-80 COMMANDS AND

Examples:

Format 1l:

LIST

LIST 500

Format 2:

LIST 150-
LIST -1000

LIST 150-1000

STATEMENTS

Lists the program currently
in memory.

In the 8K wversion, lists
all programs lines from
500 to the end.

In Extended and Disk,
lists line 500.

Lists all lines from 150
to the end.

Lists all lines from the
lowest number through 1000.

Lists lines 150 through
1000, inclusive.

BASIC-80 COMMANDS AND STATEMENTS Page 2-46

2.34 LLIST

Format:
Versions:

Purpose:

Remarks:

LLIST [<line number>[=[<line number>]1]]
Extended, Disk

To list all or part of the program currently in
memory at the line printer.

LLIST assumes a l32-character wide printer.
BASIC-80 always returns to command level after
an LLIST is executed. The options for LLIST are
the same as for LIST, Format 2.

LLIST and LPRINT are not included in all
implementations of BASIC-80.

See the examples for LIST, Format 2.

BASIC-80 COMMANDS AND STATEMENTS . Page 2=47%%

2.35 LOAD

Format:
Version:
Purpose:

Remarks:

" Example:

[V

LOAD <filename>[,R]
Disk
To load a file from disk into memory. S0

<filename> is the name that was used when the
file was SAVEd. (With CP/M, the default’*-
extension .BAS is supplied.)

" LOAD closes all open files and deletes all

variables and program lines currently residing

in memory before it loads the designated.. ...
program. However, if the "R" option is used
with LOAD, the program is RUN after it 1is

LOADed, and all open data files are kept open....:
Thus, LOAD with the "R" option may be used to
chain several programs (or segments of the same
program). Information may be passed between the

programs using their disk data files.

LOAD "STRTRK",R

BASTC-80 COMMANDS AND STATEMENTS Page 2-48

2.36 LPRINT AND LPRINT USING

Format:

Versions:
Purpose:

Remarks:

g,
fo

LPRINT [<list of expressions>]

LPRINT USING <string exp>;<list of expressions>
Extended, Disk

To print data at the line printer.

Same as PRINT and PRINT USING, except output
goes to the line printer. See Section 2.49 and
Section 2.50.

LPRINT assumes a l32-character-wide printer.

LPRINT and LLIST are not included in all
implementations of BASIC-80. o

BASIC-80 COMMANDS AND STATEMENTS

2.37 LSET AND RSET .

Format:

Version:

Purpose:

Remarks:

Examples:

NOTE:

yis

LSET <string variable> = <string expression>
RSET <string variable> = <string expression>

L1}

Disk

To move data from memory to a random file buffer
(in preparation for a PUT statement).

Page 2-49...

[§3]

[¥]

(AL

o
T e N7

If <string expression> requires fewer bytes than?&g

were FIELDed to <string variable>, LSET
left-justifies the string in the field, and RSET
right-justifies the string. (Spaces are used to
pad the extra positions.) If the string is too
long for the field, characters are dropped from

the right. Numeric values must be converted toxwny

strings before they are LSET or RSET. See the
MKIS, MKSS, MKDS$ functions, Section 3.25.

150 LSET AS=MKSS (AMT)
160 LSET D$=DESC(S)

See also Appendix B.

LSET or RSET may also be used with a non-fielded
string variable to left-justify or right-justify
a string in a given field. For example, the

program lines

110 A$=SPACES (20)
120 RSET AS=NS$

right-justify the string N$§ in a 20-character
field. This can be very handy for formatting
printed output.

BASTC-80 COMMANDS AND STATEMENTS page 2-50

2.38 MERGE
Format:
Version:

Purpose:

MERGE <filename>
Disk

To merge a specified disk file into the program

- currently in memory.

Remarks:

Example:

<filename> is the name used when the file was
SAVEd. (With CP/M, the default extension .BAS
is supplied.) The file must have -been SAVEd in
ASCII format. (If not, a "Bad file mocde" error
occurs.) }

If any lines in the disk file have the same line
numbers as lines in the program in memory, the
lines from the file on disk will replace the
corresponding lines in memory. (MERGEing may be
thought of as "inserting"” the program lines on
disk into the program in memorv.)

BASIC-80 always retﬁ:ns to command level after
executing a MERGE command.

MERGE "NUMBRS"

BASIC-80 COMMANDS AND STATEMENTS Page 2-51 .

. Ay

2.39 MIDS . .

Format: MIDS (<string expl>,n([,m])=<string exp2>

gz
P

where n and m are integer -expressions and
o s

<string expl> and <string exp2> are string’
expressions. e

Versions: Extended, Disk

Purpose: To replace a portion of one string with anothefr -
string.
Remarks: The characters in <string expl>, beginning at

position n, are replaced by the characters in
<string exp2>. The optional m refers .to the
number of characters from <string exp2> that
will be used in the replacement. If m 1is
omitted, all of <string exp2> is used. However,
regardless of whether m is omitted or included,
the replacement of characters never goes beyond
the original length of <string expl>.

’ " Example: 10 A$="KANSAS CITY, MO"
20 MIDS$ (AS$,14)="Ks"
30 PRINT AS ClmmE et
RUN ’

KANSAS CITY, KS

MIDS is also a function that returns a substring
of a given string. See Section 3.24.

BASIC-80 COMMANDS AND STATEMENTS Page 2-=52

2.40 NAME

Format:
Versicn:
Purpose:

Remarks:

Example:

NAME <old filename> AS <new filename>
Disk
To change the name of a disk file.

<0ld filename> must exist and <new filename>
must not exist; otherwise an error will result.
After a NAME command, the file exists on the
same disk, in the same area of disk space, with
the new name.

Ok
NAME "ACCTS" AS "LEDGER"
Ok

In this example, the file that was
formerly named ACCTS will now be named LEDGER.

BASIC-80 COMMANDS AND STATEMENTS _ Page 2-53

2.41 NEW

Format:
Versions:

Purpose:

Remarks:

NEW

8K, Extended, Disk

To delete the program currently in memory and::-:.

clear all variables.

o

T

NEW is entered at command level to clear memory

before entering a new program. BASIC-80 always~ "=

returns to command level after a NEW is
executed.

BASTIC-80 COMMANDS AND STATEMENTS Page 2-54

2.42 NULL

Format:
Versions:

Purpbse:

Remarks:

NULL <integer expression>
8K, Extended, Disk

To set the number of nulls to be printed at the
end of each line.

For l0~character-per-second tape punches,
<integer expression> should be >=3. When tapes
are not being punched, <integer expression>
should be 0 or 1 for Teletypes and
Teletype-compatible CRTs. <integer expression>
should be 2 or 3 for 30 cps hard copy printers.
The default wvalue is 0.

Ok

NULL 2

ok

100 INPUT X .
200 IF X<50 GOTO 800

©

Two null characters will be printed after each
line.

BASIC-80 COMMANDS AND STATEMENTS Page 2—?5

2.43 ON ERROR GOTO

Format:
Versions:

Purpose:

Remarks:

NOTE:

Example:

ON ERROR GOTO <line number>

Extended, Disk

To enable error trapping and specify the first

line of the error handling subroutine.

Once error trapping has been enabled all errors

detected, 1including direct mode errors (e.g.,
Syntax errors), will cause a Jjump to the
specified error handling subroutine. If <line
number> does not exist, an "Undefined 1line"
error results. To disable error trapping,
execute an ON ERROR GOTO 0. Subsequent errors
will print an error message and halt execution.
An ON ERROR GOTO 0 statement that appears in an
error trapping subroutine causes BASIC-80 to

stop and print the error message for the errotr 7

that caused the trap. It is recommended that
all error trapping subroutines execute an ON
ERROR GOTO 0 if an error is encountered for
which there is no recovery action.

If an error occurs during execution of an error
handling subroutine, the BASIC error message is
printed and execution terminates. Error
trapping does not occur within the error
handling subroutine.

10 ON ERROR GOTO 1000

%

¢

§43

FA

BASIC-80 COMMANDS AND STATEMENTS Page 2-56

2.44 ON...GOSUB AND ON...GOTO

Format: ON <expression> GOTO <list of line numbers>
ON <expression> GOSUB <list of line numbers>

Verrsions: 8K, Extended, Disk
Purﬁ;ose: - To branch to -one of several specified 1line
3 numbers, depending on the wvalue returned when an
expression is evaluated.

Remarks: The value of <expression> determines which line
number in the list will be used for branching.
For example, if the value is three, the third
line number in the list will be the destination
of the branch. (If the wvalue is a non-integer,
the fractional portion is rounded.)

In the ON...GOSUB statement, each lihe number in
the list must be the first line number of a
subroutine. :

i
¥

¥
o1
§

If the value of <expression> is zero or greater
o than the number of items in the list (but less
. than or equal to 255), BASIC continues with the

next executable statement. If the wvalue of
_ <expression> is negative or greater than 255, an
= "Illegal function call" error occurs.

[.

Example: 100 ON L-1 GOTO 150,300,320,390

R

i

» 4 IF

ot

s g

BASIC-80 COMMANDS AND STATEMENTS Page 2-57

2.45 OPEN

Format: OPEN <mode>, [#]<file number>,<filename>, [<reclen>]

.

Version: Disk
Purpose: To allow I/0O to a disk file.

Remarks: A disk file must be OPENed before any disk I/O-"
operation can be performed on that file. OPEN

“allocates a buffer for I/O to the file and "
determines the mode of access that will be used

with the buffer.

<mode> is a string expression whose first*®*
character is one of the following:

0 specifies sequential odutput mode
I specifies sequential input mode
R specifies random input/output mode

<file number> is an integer expression whose
value is between one and fifteen. The number is-
then associated with the file for as long as it
is OPEN and is wused to refer other disk I/O
statements to the file.

<filename> is a string expression containing a
name that conforms to your operating system's
rules for disk filenames. ety TG

<reclen> is an integer expression which, if
included, sets the record length for random
files. The default record length is 128 bytes.
See also page A-3.

NOTE: A file can be OPENed for sequential input or
random access on more than one file number at a

time. A file may be OPENed for output, however,
on only one file number at a time.

Example: 10 OPEN "I",2,"INVEN"

See also Appendix B.

BASIC-80 COMMANDS AND STATEMENTS Page 2-58

2.46 OPTION BASE

Format: OPTION BASE n
o where n is 1 or O

Ver sions: 8K, Extended, Disk

Purpose: To declare the minimum value for array
subscripts.

Remarks: The default base is 0. If the statement
OPTION BASE 1

is executed, the lowest value an array subscript
may have is one.

fi:

BASIC-80 COMMANDS AND STATEMENTS , o Page 2-597T&%

2.47 OUT

Format: our I,J IO
where I and J are integer expressions in the
range 0 to 255. 5 wasT

Versions: 8K, Extended, Disk

yi%

Purpose: To send a byte to a machine output port.

Remarks: The integer expression I is the port number, and:"sn
the integer expression J 1is the data to be
transmitted. A

Example: 100 ouT 32,100

BASIC-80 COMMANDS AND STATEMENTS Page 2-50

2.48 DPORE
Format: PORE I,J
where I and J are integer expressions
Versions: 8K, Extended, Disk '
Pur?qse: . To write a byte intora_memo:y location.
Remarks: The integer expression I is the address of the

memory location to be POKREd. The integer
expression J is the data to be POREd. J must be
in the range 0 to 255. 1In the 8K version, I
must be less than 32768. In the Extended and
Disk versions, I must be_ in the range 0 to
65536.

b With the 8K version, data may be POREd into
e memory locations above 32768 by supplying a
i negative number for I. The value of I 1is
£ computed by subtracting 65536 from the desired
Pazo address. For example, to POKE data - into
e location 45000, I = 45000-65536, or =20536.

The complementary function to POKE is PEEK. The
argument to PEEK is an address from which a byte
is to be read. See Section 3.27. “

. PORKE and PEEK are useful for efficient data
N storage, loading assembly language subroutines,

: and passing arguments and results to and from
assembly language subroutines.

10 POKE &H5A00,&HFF

=
Fi

£

BASIC-80 COMMANDS AND STATEMENTS Page 2-61

2.49 PRINT

Format:
Versions:
Purpose:

Remarks:

PRINT [<list of expressions>]
8K, Extended, Disk —

To output data at the terminal.

If <list of expressions> 1is omitted, a blank
line 1is printed. If <list of expressions> is: %
included, the wvalues of the expressions are
printed at the terminal. The expressions in the:msz=
list may be numeric and/or string expressions.
(Strings must be enclosed in quotation marks.)

Print Positions

The position of each printed item is determined
by the punctuation used to separate the items in
the list. BASIC-80 divides the line into print
zones of 14 spaces each. In the 1list of
expressions, a comma causes the next value to be
printed at the beginning of the next zone. A
semicolon causes the next value to be printed
immediately after the last value. Typing one or
more spaces between expressions has the same
effect as typing a semicolon.

If a comma or a semicolon terminates the list of
expressions, the next PRINT statement begins
printing on the same line, spacing accordingly.

If the list of expressions terminates without a
comma or a semicolon, a carriage return is
printed at the end of the line. If the printed
line is longer than the terminal width, BASIC-80
goes to the next physical line and continues®*=
printing.

Printed numbers are always followed by a space.
Positive numbers are preceded by a space.
Negative numbers are preceded by a minus sign.
Single precision numbers that can be represented
with 6 or fewer digits in the unscaled format no
less accurately than they can be represented in
the scaled format, are output using the unscaled
format. For example, lE-7 is output as .0000001
and 1E-8(-7) is output as 1E-08. Double
precision numbers that can be represented with
16 or fewer digits in the unscaled format no
less accurately than they can be represented in
the scaled format, are output using the unscaled
format. For example, 1D-15 1is output as
.0000000000000001 and 1D-16 is output as 1D-16.

BASIC-80 COMMANDS AND STATEMENTS ~ ~ Page 2-62

Example 1:

Example 2:

i

Exaﬁéle 3:

A question mark may be used in place of the word
PRINT in a PRINT statement.

10 X=5
20 PRINT X+5, X-5, X*(=-5), X75
30 END
RUN
10 0 =25 3125

Ok

In this example, the commas in the PRINT
statement cause each value to be printed at the
beginning of the next print zone.

LIST

10 INPUT X

20 PRINT X "SQUARED IS" X"2 "AND";
30 PRINT X "CUBED IS" X"3

40 PRINT

50 GOTO 10

ok

RUN

29 '

9 SQUARED IS 81 AND 9 CUBED IS 729

? 21
21 SQUARED IS 441 aND 21 CUBED IS 5261

?

In this example, the semicolon at the end of
line 20 causes both PRINT statements to be
printed on the same line, and line 40 causes a
blank line to be printed before the next prompt.

10 FOR X =1 TO §
20 J=J+5

30 R=K+10

40 ?J;:K;

50 NEXT X

5 10 10 20 15 30 20 40 25 50

In this example, the semicolons in the PRINT
statement cause each value to be printed
immediately after the preceding value. (bon't
forget, a number is always followed by a space
and positive numbers are preceded by a space.)
In 1line 40, a question mark is used instead of
the word PRINT.

BASIC-80 COMMANDS AND STATEMENTS Page 216§

2.50 PRINT

USING

Format:
Versions:
Purpose:
Remarks

and
Examples:

"\n spaces\"

PRINT USING <string exp>;<list of expressions>
Extended, Disk ’

To print strings or numbers using a specified
format.

<list of expressions> is comprised of the string
expressions or numeric expressions that are to
be printed, separated by semicolons. <string
exp> is a string literal (or variable) comprised
of special formatting characters. These

formatting characters (see below) determine the .,
field and the format of the printed strings orf~

numbers.

String Fields

When PRINT USING is used to print strings, one
of three formatting characters may be used to
format the string field:

Specifies that only the first character in the
given string is to be printed.

Specifies that 2+n characters from the string
are to be printed. If the backslashes are typed
with no spaces, two characters will be printed;

with one space, three characters will be

printed, and so on. If the string 1is longer
than the field, the extra characters are
ignored. If the field 1is lonnger than the
string, the string will be left-justified in the
field and padded with spaces on the right.

Example: v nmewi

10 AS$S="LOOK":B$="0QUT"

30 PRINT USING "!";AS$;BS

40 PRINT USING "\ \";A$;BS

50 PRINT USING "\ \";A$;BS;" 11"
RUN

LO

LOOKOUT

LOOK ouT !!

BASIC-80 COMMANDS AND STATEMENTS page 2-64 .

Mg Specifies a variable length string field. When
the field 1is specified with "&", the string is
output exactly as input. Example:

10 A$S="LOOK":B$S="0UT"
20 PRINT USING "!";AS;
30 PRINT USING "&";BS
RON
Lour

Numeric Fields

When PRINT USING is used to print numbers, the
following special characters may be used to

format the numeric field: _—
A number sign is used to represent each digit
position. Digit positions are always filled.
If the number to be printed has fewer digits
than positions specified, the number will be
. ‘ right-justified (preceded by spaces) in the
e . £ield.

. A decimal point may be inserted at any position
in the €£field. If the format string specifies
that a digit is to precede the decimal point,
the digit will always be printed (as 0 if

= necessary). Numbers are rounded as necessarv.

PRINT USING "##.#%#";.78
0.78

T

- DPRINT USING "&44. 32";987.654
987.65

PRINT USING "##.## ";10.2,5.3,66.789,.234
10.20 5.30 66.79 0.23

o In the last example, three spaces were inserted
i at the end of the format string to separate the
- printed values on the line.

o+ A plus sign at the beginning or end of the
s format string will cause the sign of the number
e (plus or minus) to be printed before or after
the number.

BASIC-80 COMMANDS AND STATEMENTS Page 2-65

* %

S

**s

A minus sign at the end of the format field will
cause negative numbers to be printed with a
trailing minus sign.

PRINT USING "+##o## ";_68-95’204,5506'“.9
-68.95 +2.40 +55.60 -0.90

PRINT USING "##.##- ";-68,95,22.449,-7.01
68.95- 22.45 7.01-

A double asterisk at the beginning of the format

‘string causes leading spaces in the numeric
field to be filled with asterisks. The ** also

~ .specifies positions for two more digits.

PRINT USING "**#o# ";12039,‘0-9,765n1
*12.4 *-0.9 765.1

A double dollar sign causes a dollar sign to be
printed to the immediate left of the formatted
number. The $$ specifies two more digit
positions, one of which is the dollar sign. The
exponential format cannot be wused with $§.
Negative numbers cannot be used unless the minus

sign trails to the right.

PRINT USING "SS###.##";456.78
$456.78

The **$ at the beginning of a format string
combines the effects of the above two symbols.
Leading spaces will be asterisk-filled and a
dollar sign will be printed before the number.
**3 gpecifies three more digit positions, one of
which is the dollar sign.

PRINT USING "**S##.3#";2.34
**¥*32.34

A comma that is to the left of the decimal point
in a formatting string causes a comma to be
printed to the left of every third digit to the
left of the decimal point. A comma that is at
the end of the format string is printed as part
of the string. A comma specifies another digit
position. The comma has no effect if used with
the exponential (°""") format.

PRINT USING "####,.##";1234.5
1,234.50

PRINT USING "####.#%##,";1234.5
1234.50,

BASIC-80 COMMANDS AND STATEMENTS Page 2-66

A A

Four carats (or up-arrows) may be placed after
the digit position characters to specify
exponential format. The four carats allow space
for E+xx to be printed. Any decimal point
position may be specified. The significant
digits are left-justified, and the exponent is
adjusted. Unless a leading + or trailing + or -
is specified, one digit position will be used to
the left of the decimal point to print a space
or a minus sign. -

PRINT USING "$##.%%"°77"";234.56
2.35E+02

PRINT USING ".%%#4%°°""-",388888
.8889E+06

PRINT USING "+.##""""",123
+,12E+03

An underscore in the format string causes the
next character to be output as a literal
character.

PRINT USING "_!#%.4%_1";12.34

112.34!

The literal character itself may be an
underscore by placing "__" in the format string.

If the number to be printed is larger than the
specified numeric field, a percent sign 1is
printed in front of the number. If rounding
causes the number to exceed the field, a percent
sign will be printed in front of the rounded

number.

PRINT USING "##.%#%";111.22
$111.22

PRINT USING ".##";.999
$1.00

If the number of digits specified exceeds 24, an
"tllegal function call" error will result.

BASIC-80 COMMANDS AND STATEMENTS - - - Page 2-67.. .

et Nl

2.51 PRINT# AND PRINT# USING ' o

Format: _ PRINT#<filenumber>, [USING<string exp>;]<list of exps>
Version: Disk

Purpose: To write data to a sequential disk file.

Remarks: <file number> 1is the number used when the file

was OPENed for output. <string exp> is
comprised of formatting characters as described
in Section 2.50, PRINT USING. The expressions
in <list of expressions> are the numeric and/or
string expressions that will be written to the

file.

PRINT# does not compress data on the disk. An
image of the data is written to the disk, just
as it would be displayed on the terminal with a
PRINT statement. For this reason, care should
be taken to delimit the data on the disk, so
that it will be input correctly from the disk.

In the list of expressions, numeric expressions
should be delimited by semicolons. For example,

PRINT#1,A:B;C;X;Y;2

(If commas are used as delimiters, the extra
blanks that are inserted between print fields
will also be written to disk.)

String expressions must be separated by
semicolons in the 1list. To format the string
expressions correctly on the disk, use explicit
delimiters in the list of expressions.

' For example, let A$="CAMERA" and B$="93604-1",
The statement

PRINT#1,AS$;BS

would write CAMERA93604-1 to the disk. Because
there are no delimiters, this could not be input
as two separate strings. To correct the
problem, insert explicit delimiters into the
PRINT# statement as follows:

PRINT#1,A$;",";BS
The image written to disk is

CAMERA,93604-1

BASIC-80 COMMANDS AND STATEMENTS Page 2-68

which <can be read back into two string
variables.

If the strings themselves contain commas,
semicolons, significant leading blanks, carriage
returns, or line feeds, write them to disk
surrounded by explicit guotation marks,
CHRS (34}).

 For example, let AS$="CAMERA, AUTOMATIC" and
BS=" -93604-1". The statement ~

PRINT#1,AS$;BS§

would write the following image to disk:
CAMERA, AUTOMATIC 93604-~-1

and the statement

INPUTH1,A$,BS

would input "CAMERA" to AS and
"AUTOMATIC 93604-1" to BS. To separate these
strings properly on the disk, write double
quotes to the disk image using CHRS(34). The
statement '

Gy o

PRINT#1,CHRS (34) ;AS;CHRS (34) ;CHRS (34) ;B$;CHRS (34)
writes the following image to disk:

"CAMERA, AUTOMATIC"" 93604-1"

and the statement

INPUT#1,A8,BS

would input "CAMERA, AUTOMATIC" to AS and
" 93604~1" to BS.

The PRINT# statement may also be used with the
USING option to control the format of the disk
file. For example:

PRINT#1,USING"SS###.%%,":J:K;L
For more examples using PRINT#, see Appendix B.

See also WRITE#, Section 2.68.

BASIC-80 COMMANDS AND STATEMENTS - Page 2-69

2.52 PUT

Format:
Version:

Purpose:

Remarks:

Example:

NOTE:

PUT [#]<file number>[,<record number>]
Disk

To write a record from a random buffer to a
random disk file.

<file number> is the number under which the file
was OPENed. If <record number> is omitted, the
record will have the next available record
number (after the last PUT). The largest
possible record number is 32767. The smallest
record number is 1.

See Appendix B.

PRINT#, PRINT# USING, and WRITE# may be used to
put characters in the random file buffer before

a PUT statement.

In the case of WRITE#, BASIC-80 pads the buffer
with spaces up to the carriage return. Any
attempt to read or write past the end of the
buffer causes a "Field overflow"” error.

BASIC~-80 COMMANDS AND STATEMENTS Page 2-70 .
2.53 RANDOMIZE

Format: RANDOMIZE [<expression>]

Versions: Extended, Disk

Purpose: To reseed the random number generator.

Remarks: If <expression> is omitted, BASIC-80 suspends
program execution and asks for a value by
printing

Random Number Seed (-32768 to 32767)7?

before executing RANDOMIZE.

If the random number generator is not reseeded,
the RND function returns the same sequence of
random numbers each time the program is RUN. To
change the sequence of random numbers every time
the program is RUN, place a RANDOMIZE statement
at the beginning of the program and change the
argument with each RUN. ' .

Example: 10 RANDOMIZE
e 20 FOR I=1 TO 5
30 PRINT RND;
40 NEXT I
RUN
Random Number Seed (-32768 to 32767)? 3 (user
types 3)
.88598 .484668 .586328 .119426 .709225
Ok
RUN
Random Number Seed (-32768 to 32767)? 4 (user
types 4 for new sequence)
.803506 .162462 .929364 .292443 ,322921
Ok
RUN
Random Number Seed (=32768 to 32767)? 3 (same
sequence as first ROUN)
.88598 .484668 .586328 .119426 .709225

Ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-71

2.54 READ

Format: READ <list of variables> £.1

Versions: 8K, Extended, Disk s

Purpose: ' To read values from a DATA statement and assign .
them to wvariables. (See DATA, Section 2.10.) 7

Remarks: A READ statement must always be used o

conjunction with a DATA statement. READ ...
statements assign variables to DATA statement
values on a one-to-one basis. READ statement
variables may be numeric or string, and the
values read must agree with the variable types
specified. If they do not agree, a "Syntax
error™ will result.

A single READ statement may access one oOr more
DATA statements (they will be accessed 1in
order), or several READ statements may access
the same DATA statment. If the number of
variables in <list of wvariables> exceeds the
number of elements in the DATA statement(s), an
OUT OF DATA message is printed. If the number
of variables specified is fewer than the number
of elements in the DATA statement(s), subsequentrx”
READ statements will begin reading data at the

first unread element. If there are no
subsequent READ statements, the extra data is
ignored. :

To reread DATA statements from the start, use
the RESTORE statement (see RESTORE, Section

2.57)

Example 1: .

80 FOR I=1 TO 10

90 READ A(I)

100 NEXT I

110 pATA 3.08,5.19,3.12,3.98,4.24
120 pATA 5.08,5.55,4.00,3.16,3.37

-
.

.

This program segment READs the values from the
DATA statements into the array A. After
execution, the value of A(l) will be 3.08, and

SO on.

BASIC-80 COMMANDS AND STATEMENTS

Example 2:

LIST

10 PRINT "CITY", "STATE", " ZIP"
20 READ CS$,S8,2

30 DATA "DENVER,", COLORADO, 80211
40 PRINT CS,S$,2

Ok

RUN

CITY STATE ZIP
DENVER, COLORADO 80211
Ok ' _ :

This program READs string and numeric data
the DATA statement in line 30.

Page 2-72

from

BASIC-80 COMMANDS AND STATEMENTS Page 2-73

2.55 REM

Format:
Versions:

Purpose:

Remarks:

Example:

REM <remark>
8K, Extended, Disk

To allow explanatory remarks to be inserted in a
program.

REM statements are not executed @ but are output
exactly as entered when the program is listed.

REM statements may be branched into (from a GOTO
or GOSUB statement), and execution will continue
with the first executable statement after the
REM statement.

In the Extended and Disk versions, remarks may
be added to the end of a line by preceding the
remark with a single quotation mark instead of
:REM.

WARNING: Do not use this in a data statement as
it would be considered legal data. :

-

120 REM CALCULATE AVERAGE VELOCITY
130 FOR I=1 TO 20
140 SUM=SUM + V(I)

or, with Extended and Disk versions:

®

120 FOR I=1 TO 20 'CALCULATE AVERAGE VELOCITY
130 SUM=SUM+V(I)
140 NEXT I

-

BASIC-80 COMMANDS AND STATEMENTS Page 2-74

2.56 RENUM

Format: RENUM [[<new number>][,[<0ld number>][,<increment>]]]
Versions: Extended, Disk
Purpése: To renumber program lines.

Remarks: <new number> is the first line number to be used
in the new sequence. The default is 10. <old
number> is the line in the current program where
renumbering is to begin. The default is - the
first line of the program. <increment> is the
increment to be used in the new sequence. The
default is 10.

RENUM also changes all 1line number references
following GOTO, GOSUB, THEN, ON...GOTO,
ON...GOSUB and ERL statements to reflect the new
line numbers. If a nonexistent line number
appears after one of these statements, the error
message "Undefined 1line =xxxxx in yyyyy" |is
printed. - The incorrect line number reference
(xxxxx) is not changed by RENUM, but line number

yyyyy may be changed.

NOTE: RENUM cannot be used to c¢hange the order of
program lines (for example, RENUM 15,30 when the
program has three lines numbered 10, 20 and 30)
or to create line numbers greater than 65529.
An "Illegal function call®™ error will result.

Examples: RENUM Renumbers the entire program.
: The first new line number
will be 10. Lines will
increment by 10.

RENUM 300,,50 Renumbers the entire pro-
gram. The first new line
number will be 300. Lines
will increment by 50.

RENUM 1000,900,20 Renumbers the lines from
900 up so they start with
line number 1000 and
increment by 20.

BASIC-80 COMMANDS AND STATEMENTS

2.57 RESTORE

Format: RESTORE [<line number>]

Versions: 8K, Extended, Disk

Purpose: To allow DATA statements to be reread from a

specified line.

Remarks: After a RESTORE statement is executed,

Page 2-75

L
o e

¥
tiy
i s

e T

the next "%~

READ statement accesses the first item in the

first DATA statement in the program.

If «<line

number> is specified, the next READ statement
accesses the first item in the specified DATA

statement.

Example: 10 READ A,B,C
20 RESTORE
30 READ D,E,F
40 DATA 57, 68, 79

8]
™
1]

P

BASIC-80 COMMANDS AND STATEMENTS S page 2-76

2. 58 RESUME

Formats:

Versions:

Puxrpose:

Remarks:

Exar;ple:

RESUME
RESUME 0

RESUME NEXT

- RESUME <line number>

Extended, Disk

To continue program execution after an error
recovery procedure has been performed.

Any one of the four formats shown above may be
used, depending upon where execution is to
resume:

RESUME Execution resumes at the
or statement which caused the

RESUME Q i error.

RESUME NEXT Execution resumes at the

statement immediately fol-
. lowing the one which
caused the error.

RESUME <line number> Execution resumes at
<line number>.

A RESUME statement that is not in an error trap
routine causes a "RESUME without error" message

to be printed.

10 ON ERROR GOTO 900

©

900 IF (ERR=230)AND(ERL=90) THEN PRINT "TRY
AGAIN":RESUME 80

© @

BASIC—SO COMMANDS AND STATEMENTS Page 2-77

2.59 RUN
Format 1l: RUN [<line number>]

Versions: 8K, Extended, Disk

Purpose: To execute the program currently in memory

Remarks: If <line number> is specified, execution
on that line. Otherwise, execution beg

the lowest line number. BASIC-80 always r
to command level after a RUN is executed.

Example: RUN

Format 2: RUN <filename>[,R]

Version: Disk
Purpose: To load a file from disk into memory and r
Remarks: <filename> is the name used when the £fil

SAVEQd. (With Ccp/M and 1ISIS-II, the d
extension .BAS is supplied.)

RUN closes all open files and delete
current contents of memory before loadi

begins
ins at
eturns

it

un it.

e was
efault

s the
ng the

designated program. However, with the "R"
option, all data files remain OPEN.

Example: RUN "NEWFIL",R
See also Appendix B.

NOTE: The BASIC Compiler supports the RUN and RUN LINE

number> forms of the RUN statement. The BASIC&xX

Compiler does not support the "R" option
RUN. If you want this feature, the
statement should be used.

with
CHAIN

£y

*

e

BASIC~-80 COMMANDS AND STATEMENTS Page 2-78

2.60 SAVE

Format:
Version:
Purpose:

Remarks:

Examples:

SAVE <filename>[,A | ,P]

Disk

To save a program file on disk.

<filename> is a quoted string that conforms to
your operating system's regquirements for
filenames. (With CP/M, the default extension
.BAS is supplied.) If <filename> already exists,
the file will be written over.

Use the A option to save the file in ASCII
format. Otherwise, BASIC saves the file in a
compressed binary format. ASCII format takes
more space on the disk, but some disk access
requires that files be in ASCII format. For
instance, the MERGE command requires and ASCII
format file, and some operating system commands
such as LIST may require an ASCII format file.

Use the P option to protect the file by saving
it in an encoded binary format. When a
protected file is later RUN (or LOADed), any

attempt to list or edit it will fail.

SAVE"COM2" ,A
SAVE"PROG", P

See also Appendix B.

BASIC-80 COMMANDS AND STATEMENTS Page 2-79
2.61 STOP

Format: STOP
Versions: 8K, Extended, Disk e

Purpose: To terminate program execution and return to .o
command level.

Remarks: STOP statements may be used anywhere in a
program to terminate execution. When a STOP is
encountered, the following message is printed:

Break in line nnnnn

Unlike the END statement, the STOP statement
does not close files.

BASIC-80 always returns to command level after a
STOP 1is executed. Execution is resumed by
issuing a CONT command (see Section 2.8).

Example: 10 INPUT A,B,C

20 K=A"2*5,3:L=B"3/.26

30 sTOP

40 M=C*K+100:PRINT M

RUN

?21,2,3

BREAK IN 30

Ok

PRINT L TR K
30.7692

Ok

CONT

115.9

Ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-80

2.62 SWAP

Pormat:
Versions:
Purpose:

Remarks:

Exaﬁ?le:

SWAP <variable>,<variable>
Extended, Disk
Tc exchange the values of two variables.

Any type variable may be SWAPped (integer,
single precision, double precision, string), but
the two variables must be of the same type or a
"Type mismatch" error results.

LIST

10 A$=" ONE "™ : B$=" ALL " : C$="FOR"
20 PRINT A$ C$ BS

30 SWAP AS, BS

40 PRINT AS CS$ BS

RON -

Ok

ONE FOR ALL

ALL FOR ONE

ok

BASIC-80 COMMANDS AND STATEMENTS

2.63 TRON/TROFF

Format:

Versions:

Purpose:

Remarks:

Example:

TRON
TROFF

Extended, Disk

Page 2-81.

To trace the execution of program statements.

As an aid in debugging, the TRON statement
(executed in either the direct or indirect mode)

enables a trace flag

that prints each Lline

number of the program as it is executed. The

numbers appear enclosed in square brackets.

trace flag is disabled with the TROFF statement
(or when a NEW command is executed).

TRON

Ok

LIST

10 k=10

20 FOR J=1 TO 2

30 =K + 10

40 PRINT J:;K:;L

50 K=K+10

60 NEXT

70 END

ok

RUN

[101[20]([30][40] 1 10
[50]1[60]([30]1[40] 2 20
[50]1(60]([70]

Ok

TROFF

Ok

20
30

a4

i

o
£

i
Nt

3t

W,‘

The &2

BASIC~-80 COMMANDS AND STATEMENTS Page 2-82

2.64 WAIT

Format: WAIT <port number>, I[,J]
where I and J are integer expressions

Versions: 8K, Extended, Disk

Purpose: To suspend program execution while monitoring
the status of a machine input port.

Remarks: The WAIT statement causes execution to be
suspended until a specified machine input port
develops a specified bit pattern. The data read
at the port is exclusive OR'ed with the integer
expression J, and then AND'ed with " I. If the
result is zero, BASIC-80 loops back and reads
the data at the port again. If the result is

nonzero, execution continues with the next
statement. If J is omitted, it is assumed to be
- L]
: zero

CAUTION: ‘It is possible to enter an infinite loop with
, the WAIT statement, in which case it will be
necessary to manually restart the machine.

Example: 100 WAIT 32,2

BASIC-80 COMMANDS AND STATEMENTS Page 2-83

s

[RE]

2.65 WHILE...WEND .

Format: WHILE <expression>

[<loop statements>]

. -

WEND
Versions: Extended, Disk _
Purpose: To execute a series of statements in a loop as

long as a given condition is true.

Remarks: If <expression> is not zero (i.e., true), <loop
statements> are executed until the WEND
statement is encountered. BASIC then returns to
the WHILE statement and checks <expression>. If
it is still true, the process is repeated. If
it is not true, execution resumes with the
statement following the WEND statement. e

WHILE/WEND loops may be nested to any level.
Each WEND will match the most recent WHILE. An
unmatched WHILE statement causes a "WHILE. .-

without WEND" error, and an unmatched WEND
statement causes a "WEND without WHILE" error.

Example: 90 'BUBBLE SORT ARRAY AS
100 FLIPS=1 'FORCE ONE PASS THRU LOOP
110 WHILE FLIPS

115 FLIPS=0
120 FOR I=1 TO J-1
130 IF AS$(I)>A$(I+1l) THEN
SWAP AS(I),A$(I+l) :FLIPS=1
140 NEXT I

150 WEND

BASIC-80 COMMANDS AND STATEMENTS Page 2—84

2.66 WIDTH

Format:
Versions:

Purpose:

Remarks:

Example:

WIDTH [LPRINT] <integer expression>
Extended, Disk

To set the printed 1line width in number of
characters for the terminal or line printer.

If the LPRINT option is omitted, the line width
is set at the terminal. If LPRINT is included,
the line width is set at the line printer.

<integer expression> must have a value in the
range 15 to 255. The default width is 72
characters.

If <integer expression> is 255, the line width
is "infinite," that 1is, BASIC never inserts a
carriage return. However, the position of the
cursor or the print head, as given by the POS or
LPOS function, returns to zero after position
255.

10 PRINT “ABCDEFGHIJKLMNOPQRSTUVWXYZ"
RUN

ABCDEFGHIJKLMNOPQRSTUVWXY?Z

Ck

WIDTE 18

Ok

RUN

ABCDEFGHIJRLMNOPQR

STUVWXYZ

Ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-85

2.67 WRITE

Format:
Version:
Purpose:

Remarks:

Example:

L]

WRITE[<list of expressions>]
Disk

To output data at the terminal.

If <list of expressions> 1is omitted, a blank
line is output. If <list of expressions> is
included, the values of te expressions aré
output at thee terminal. The expressions in the
list may be numeric and/or string expressions,
and they must be separated by commas. :

When the printed items are output, each item
will be separated from the last by a comma.
Printed strings will be delimited by quotation
marks. After the last item in the list is
printed, BASIC inserts a carriage return/line
feed.

WRITE outputs numeric values using the same
format as the PRINT statement, Section 2.49.

10 A=80:B=90:C$="THAT'S ALL"
20 WRITE A,B,CS
RUN
80, 90,"THAT'S ALL"
Ok

BASIC-80 COMMANDS AND STATEMENTS ‘ Page 2-86

2.68 WRITE#

Format:

Version:
Purpose:

Remarks:

Example:

WRITE#<file number>,<list of expressions>
Disk

To write data to a sequential file.

‘<file number> is the number under which the file

was OPENed in "O" mode. The expressions in the
list are string or numeric expressions, and they
must be separated by commas. .

The difference between WRITE# and PRINT# is that
WRITEZ inserts commas between the the items as
they are written to disk and delimits strings
with quotation marks. Therefore, it 1is not

_necessary for the user to put egplicit

delimiters in the list. A carriage return/line
feed sequence is inserted after the last item in
the list is written to disk.

Let AS="CAMERA" and BS="936Q04-1". The
statement:

WRITE#1,AS,BS

writes the following image to disk:
"CAMERA","93604-1"

A subsequent INPUT# statement, such as:
INPUT#1,AS$,BS

would input "CAMERA" to A$ and "93604-1" to BS.

t

CHAPTER 3
BASIC-80 FUNCTIONS

The intrinsic functions provided by BASIC-80 are presented
in this chapter. The functions may be called from any
program without further definition.

Arguments to functions are always enclosed in parentheses.
In the formats given for the functions in this chapter, the
arguments have been abbreviated as follows:

X and Y Represent any numeric expressions
I and J Represent integer expressions i
X$ and ¥$ Represent string expressions

If a floating point value is supplied where an integer is
required, BASIC-80 will round the fractional portion and use
the resulting integer.

NOTE

With the BASIC-80 and BASIC-86
interpreters, only integer and
single precision resullts are
returned by funtions. Double
precision functions are
supported only by the BASIC
compiler.

BASIC-80 FUNCTICNS

3.1 ABS

Format:

Versions:
Action:

Example:

3.2 ASC

Format:
Versions:

Action:

Example:

Page 3-2

ABS (X)
8%, Extended, Disk

Returns the absolute value of the expression X.

PRINT ABS(7*(-5))
35
ok

ASC (X§)
8K, Extended, Disk

Returns a numerical value that is the ASCII code
of the first character of the string XS. (See
Appendix M for ASCII codes.) If XS is null, an
"Illegal function call" error -is returned.

10 X$ = "TEST"
20 PRINT ASC(XS)
RUN

84
Ok

See the CHR$S function for ASCII-to-string

conversion.

BASIC-80 FUNCTIONS

3.3 ATN

Pormat:
Versions:

Action:

Example:

3.4 CDBL

Format:
Versions:
Action:

Example:

Page 3-3

ATN (X)
8K, Extended, Disk

Returns the arctangent of X in radians. Result
is in the range -pi/2 to pi/2. The expression X
may be any numeric type, but the evaluation of
ATN is always performed in single precision.

10 INPUT X
20 PRINT ATN(X)
RUN
23
1.24905
Ok

CDBL (X)
Extended, Disk

Converts X to a double precision number. x

10 A = 454.67

20 PRINT A;CDBL(A)
RUN
454.67

Ok

454.6700134277344

BASIC-80 FUNCTIONS Page 3~4

3.5 CHRS
Format:

Versions:

Action:

BExample:

3.6 CINT

Format:
Versions:
Action:

Example:

CHRS (I)
8K, Extended, Disk

Returns a string whose one element has ASCII
code I. (ASCII codes are listed in Appendix M.)
CHRS is commonly used ¢to send a special
character to the terminal. For instance, the
BEL character could be sent (CHR$(7)) as a
preface to an error message, Or a form feed
could be sent (CHRS$(12)) to clear a CRT screen
and return the cursor to the home position.

PRINT CHRS (66)

B

Ok

See the ASC function for ASCII-to-numeric

conversion.

CINT(X)
Extended, Disk

Converts X to an integer by rounding the
fractional portion. If X is not in the range
-32768 to 32767, an "Overflow" error occurs.

PRINT CINT(45.67)
46
Ok

See the CDBL and CSNG functions for converting
numbers to the double precision and single
precision data type. See also the FIX and INT
functions, both of which return integers.

BASIC-80 FUNCTIONS

3.7 COS

Format:
Versions:

Action:

Example:

3.8 CSNG

Format:
Versions:
Action:

Example:

CosS (X)
8K, Extended, Disk

cosine
of COS(X). is

Returns the
calculation
precision.

10 X = 2*COS(.4)
20 PRINT X
RUN
1.84212
Ok

CSNG (X)

Extended, Disk

of X

Page 3-5

in radians. The
performed in single

Converts X to a single precision number.

10 A# = 975.3421%
20 PRINT A#; CSNG(A#)

RUN
975.3421 975.342

Ok

See the CINT and CDBL functions for converting
numbers to the integer and double precision data

types.

BASIC-80 FUNCTIONS Page 3-6

3.9 CVI, CVs, CVD

Format:

Version:

Action:

Example:

3.10 EOF

Format:
Versicn:

Action:

Example:

CVI(<2-byte string>)
CVS (<4~byte string>)
CVD (<8~byte string>)

Disk

Convert string- values to numeric values.
Numeric values that are read in from a random
disk file must be converted from strings back
into numbers. CVI converts a 2-byte string to
an integer. CVS converts a 4-byte string to a
single precision number. CVD converts an 8-byte
string to a double precision number.

70 FIELD #1,4 AS N$, 12 AS BS, ...
80 GET #1
90 Y=CVS(NS)

See also MRIS, MRSS$, MRDS, Section 3.25 and
Appendix B.

EOF (<file number>)
Disk

Returns -1 (true) if the end of a sequential
file has been reached. Use EOF to test for
end-of-=file while INPUTting, to avoid "Input
past end" errors.

10 OPEN "I",1,"DATA"
20 C=0

30 IF EOF(l) THEN 100
40 INPUT #1,M(C)

50 C=C+1:GOTO 30

e
@

BASIC-80 FUNCTIONS : - ' Page 3-7

3.11 EXP

FPormat:
Versions:

Action:

Example:

3.12 FIX

Format:
Versions:

Action:

Examples:

EXP (X)
8K, Extended, Disk

Returns e to the power of X. X must be
<=87.3365. If EXP overflows, the "Overflow"
error message is displayed, machine infinity
with the appropriate sign is supplied as the
result, and execution continues.

10X =5 »
20 PRINT EXP (X-1)

. RUN

54.5982
Ok

FIX(X)
Extended, Disk

Returns the truncated integer part of X. FIX(X)
is equivalent to SGN(X)*INT(ABS(X)). The major
difference between FIX and INT is that FIX does
not return the next lower number for negative X.

PRINT FIX(58.75)
58
Ok

PRINT FIX(-58.75)
-58
Ok

BASIC~-80 FUNCTIONS

3.13 FRE
Format:

Versions:

aAction:

Example:
3.14 EHEXS$

Format:
Versions:

Action:

Example:

Page 3-8

FRE (0)

FRE (XS)

8R, Extended, Disk

Arguments to FRE are dummy arguments. FRE

returns the number of bytes in memory not being
used by BASIC-80.

FRE("") forces a garbage collection before

returning the number of free Dbytes. BE
PATIENT: garbage collection may take 1 to 1-1/2
minutes. BASIC will not initiate garbage
collection until all free memory has been used

Therefore, using FRE("") periodically will

upQ
shorter delays for each garbage

result in
collection.

PRINT FRE(O0)
14542
Ok .

HEXS (X)
Extended, Disk

the
X is

Returns a string which represents
hexadecimal value of the decimal argument.

rounded to an integer before HEXS (X) is
evaluated. .
10 INPUT X
20 AS = HEXS (X)
30 PRINT X "DECIMAL IS ™ AS "™ HEXADECIMAL"
RUN
? 32
32 DECIMAL IS 20 HEXADECIMAL
Ok

See the OCTS function for octal conversion.

BASIC-80 FUNCTIONS - ' Page 3-9

3.15 INKEYS

Format:

Action:

Example:

3.16 1INP

Format:
Versions:

Action:

Example:

INKEYS

Returns either a one-character string containing
a character read from the terminal or a null
string if no character is pending at the
terminal. No characters will be echoed and all
characters are passed through tto the progranm
except for Control-C, which terminates the
program. (With the BASIC Compiler, Control-C is
also passed through to the program.)

1000 'TIMED INPUT SUBROUTINE

1010 RESPONSES=""

1020 FOR I%=1 TO TIMELIMITS

1030 A$=INKEYS : IF LEN(A$)=0 THEN 1060
1040 IF ASC(AS$)=13 THEN TIMEOUT%=0 : RETURN
1050 RESPONSE$=RESPONSE$+AS ,

1060 NEXT I%

1070 TIMEOUT$=1 : RETURN

INP(I)

8K, Extended, Disk

Returns the byte read from port I. I must be in
the range 0 to 255. INP is the complementary
function to the OUT statement, Section 2.47.

100 A=INP(255)

BASIC-80 FUNCTIONS : Page 3-10

3.17 INPUTS

Format: INPUTS (X[, [#1¥])
Version: Disk
Action: Returns a string of X characters, read from the

terminal or from file number Y. If the terminal
is used for input, no characters will be echoed
and all control characters are passed through
except Control-C, which is used to interrupt the
execution of the INPUTS function.

Example l: S 'LIST THE CONTENTS OF A SEQUENTIAL FILE IN
HEXADECIMAL
10 OPEN"I",1l,"DATA"
20 IF EOF(l) THEN 50
30 PRINT HEXS (ASC(INPUTS(1l,%#1))):
40 GOTO 20 '
50 PRINT
60 END

’ﬁxample 2: .

100 PRINT "TYPE P TO PRCCEED OR S TO STOP"
110 X$=INPUTS (1)

120 IF X$="P" THEN 500

130 IF X$="S" THEN 700 ELSE 100

©
e

BASIC-80 FUNCTIONS - Page 3-11

3.18 INSTR

Format:
Versions:

Action:

Example:

NOTE:

INSTR([I,]X$,¥S)

Extended, Disk

Searches for the first occurrence of string ¥S$
in X$ and returns the position at which the
match is found. Optional offset I sets the
position for starting the search. I must be in
the range 1 to 255. If I>LEN(XS) or if X$ is
null or if ¥$ cannot be found, INSTR returns 0.
If ¥$ is null, INSTR returns I or 1. X$ and ¥S§
may be string variables, string expressions or
string literals.

10 X$ = "ABCDEB"

20 Y$ = "B"
30 PRINT INSTR(X$,YS);INSTR(4,X$,YS)
RUN
2 6
Ok

If I=0 is specified, error message "ILLEGAL
ARGUMENT IN <line number>" will be returned. o

BASIC-80 FUNCTIONS page 3-12 ()
3.19 INT

Format: INT (X)
Versions: 8K, Extended, Disk

Action: Returns the largest integer <=X.

Examples: PRINT INT(99.89)
99
Ck

PRINT INT(-12.11)
-13
Ok

See the FIX and CINT functions which also return
integer wvalues.

3.20 LEFTS

Format: LEFPTS(X$,1)
Versionsy 8K, Extended, Disk

Action: Returns a string comprised of the leftmost I
characters of X$. I must be in the range 0 to
255, If T is greater than LEN(XS), the entire
string (X$) will be returned. If I=0, the null
string (length zero) is returned.

Example: 10 AS$ = "BASIC-80"
20 B$S = LEFTS(AS,5)
30 PRINT BS
BASIC
Ok

Also see the MIDS and RIGHTS functions.

BASIC~-80 FUNCTIONS : Page 3-13

3.21 LEN

Format:
Versions:

Action:

Example:

3.22 LOC

Format:
Version:

Action:

Example:

LEN(XS)
8K, Extended, Disk

Returns the number of characters in XS.
Non-printing characters and blanks are counted.

10 X$ = "PORTLAND, OREGON"
20 PRINT LEN(XS)

16
Ok

LOC(<file number>)
Disk

Wwith random disk files, LOC returns the record
number just read or written from a GET or PUT.
If the file was opened but no disk I/O has been
performed yet, LOC returns a 0. With sequential
files, LOC returns the number of sectors (128
byte blocks) read from or written to the file
since it was OPENed. s

200 IF LOC(1l)>50 THEN STOP

BASIC-80 FUNCTIONS Page 3-14

3.23 LOG

Format:
Versions:

Action:

Example:

3.24 LPOS

Format:
Versicns:

Action:

Example:

LOG (X)
8K, Extended, Disk

Returns the natural logarithm of X. X must be
greater than zero. :

PRINT LOG(45/7)
1.86075
Ok

LPOS (X)
Extended, Disk

Returns the current position of the line printer
print head within the line printer buffer. Does ‘
not necessarily give the physical position of

the print head. X is a dummy argument.

100 IF LPOS(X)>60 THEN LPRINT CHRS(13)

BASIC-80 FUNCTIONS ' Page 3-15
3.25 MIQ$

Format: MIDS(XS$,I[,J1)
Versions: 8K, Extended, Disk

Action: Returns a string of length J characters from XS
beginning with the Ith character. I and J must
be in the range 1 to 255. If J is omitted or if
there are fewer than J characters to the right
of the Ith character, all rightmost characters
beginning with the Ith character are returned.
If I>LEN(XS), MIDS returns a null string.

Example: LIST
10 A$="GOOD "
20 B$S="MORNING EVENING AFTERNOON" S
30 PRINT AS;MIDS(BS,9,7)
Ok
RUN -
GOOD EVENING
Ok

Also see the LEFTS and RIGHTS functions.

NOTE: If I=0 is "specified, error message "ILLEGAL
ARGUMENT IN <line number>" will be returned.

3.26 MKI$, MKS$, MEDS

Format: MKIS (<integer expression>)
MESS (<single precision expression>)
MEDS (<double precision expression>)

Version: Disk

Action: Convert numeric values to string values. Any
numeric value that is placed in a random file
buffer with an LSET or RSET statement must be
converted to a string. MKIS$ converts an integer
to a 2-byte string. MEKSS converts a single
precision number to a 4-byte string. MKDS
converts a double precision number to an 8-byte

string.

Example: 90 AMT=(K+T)
100 FIELD #1, 8 AS D$, 20 AS NS
110 LSET D$ = MKSS (AMT)
120 LSET NS = AS
130 pPUT #1

See also CVI, CVS, CVD, Section 3.9 and Appendix

3.27 QOCTS

Format:
Vérsions:

Action:

Example:

3.28 PEEK

Format:

Versions:

Actioﬁ:

Example:

BASIC-80 FUNCTIONS

Page 3-16

OCTS (X)
Extended, Disk

Returns a string which represents the octal
value of the decimal argument. X is rounded to
an integer before OCTS$ (X) is evaluated.

PRINT OCTS (24)
30
Ok

See the HEXS function for hexadecimal

conversion.

PEER(I)
8%, Extended, Disk

Returns the byte (decimal integer in the range O
to 255) read from memory location I. With the
8K version of BASIC-80, I must be less than
32768. To PEER at a memory location above
32768, subtract 65536 from the desired address.
With Extended and Disk BASIC-80, I must be in
the range 0 to 65536. PEEK is the complementary
function to the PORE statement, Section 2.48.

A=PEEK (&H5A00)

BASIC-80 FUNCTIONS Page 3-17

3.29 POS

Format:

Versions:

Action:

Example:

POS(I)
8K, Extended, Disk

Returns - the current cursor position. The
leftmost position is 1. X is a dummy argument.

IF POS(X)>60 THEN PRINT CHRS (13)

Also see the LPOS function.

3.30 RIGHTS

Format:
Versions:

Action:

Example:

RIGHTS (XS, 1)
8K, Extended, Disk

Returns the rightmost I characters of string XS.
If I=LEN(XS$), returns XsS. If 1I=0, the null
string (length zero) is returned.

10 A$="DISK BASIC-80"
20 PRINT RIGHTS (AS,8)
RUN

BASIC-80

Ok

Also see the MIDS and LEFT$ functions.

BASIC-80 FUNCTICNS Page 3-18

3.31 RND

Format:
Versions:

Action:

Example:

3.32 SGN

Format:
Versions:

Action:

Example:

RND((X)]
8K, Extended, Disk

Returns a random number between 0 and 1. The
same sequence of random numbers is generated
each time the program is RUN unless the random
number generator is reseeded (see RANDOMIZE,
Section 2.53). However, X<0 always restarts the
same sequence for any given X.

X>0 or X omitted generates the next random
number in the sequence. X=0 repeats the last
number generated.

10 FOR I=1 TO 5
20 PRINT INT(RND*100);
30 NEXT
RUN
24 30 31 51 S
Ok :

SGN (X)
8K, Extended, Disk

If ¥>0, SGN(X) returns 1l.
If X=0, SGN(X) returns 0.
If X<0, SGN(X) returns =-1l.

ON SGN(X)+2 GOTO 100,200,300 branches to 100 if
X is negative, 200 if X is 0 and 300 if X is
positive.

BASIC-80 FUNCTIONS ’ ' ‘ Page 3-19
3.33 SIN

Format: SIN(X)
Versions: 8K, Extended, Disk

Action: Returns the sine of X in radians. SIN(X) 1is
calculated single precision.
COS(X)—SIN(X+3 14159/2)

Example: PRINT SIN(1l.5)
.997495
Ok

3.34 SPACES

Format: SPACES (X)
Versions: Extended, Disk

Action: Returns a string of spaces of length X. The
expression X is rounded to an integer and must

be in the range 0 to 255.
Example: 10 FOR I =1 TO 5
20 X$ = SPACES(I)

30 PRINT X$;I
40 NEXT I

ok .

Also see the SPC function.

BASIC-80 FUNCTIONS

3.35 SPC

Format:
Versions:

Action:

Example:

3.36 SQR

Format:
Versions:
Action:

Example:

Page 3-20

SPC(I)

8K, Extended, Disk

Prints I blanks on the terminal. SPC may only
be used with PRINT and LPRINT statements. I
must be in the range 0 to 255. A';' is assumed

to follow the SPC(I) command.

PRINT "OVER"™ SPC(l5) "THERE"
OVER THERE
Ok

Alsc seethe SPACES function.

SQR(X) -
8K, Extended, Disk
Returns the sguare root of X. X must be >=0.

10 FOR X = 10 TO 25 STEP 5
20 PRINT X, SQR(X)

30 NEXT
RUN

10 3.16228
15 : 3.87298
20 4.47214
25 5

ok

BASIC-80 FUNCTIONS

3.37 STRS

Format:
Versions:

Action:

Example:

Page 3-21

STRS (X)
8K, Extended, Disk

Returns a string representation of the value of
X. ,

5 REM ARITHMETIC FOR KIDS

10 INPUT "TYPE A NUMBER";N
20 ON LEN(STR$(N)) GosuB 30,100,200,300,400,500

-
.

Also see the VAL function.

3.38 STRINGS

Formats:

Versions:

Action:

Example:

STRINGS (I,J)
STBINGS(I;XS)

Extended, Disk

Returns a string of length I whose characters
all have ASCII code J or the first character of

X$.

10 X$ = STRINGS(10,45)
20 PRINT X$ "MONTHLY REPORT" X$

RUN

BASIC-80 FUNCTIONS

3.39 TAB

Format:
Versions:

Action:

Example:

3.40 TAN

Format:
Versions:

Action:

Example:

Page 3-22

TAB(I)
8K, Extended, Disk

Spaces to position I on the terminal. If the
current print position is already beyond space
I, TAB goes to that position on the next line.
Space 1 is the leftmost position, and the
rightmost position is .the width minus one. I
must be in the range 1 to 255. TAB may only be
used in PRINT and LPRINT statements.

10 PRINT "NAME" TAB(25) "AMOUNT" : PRINT
20 READ AS,BS

30 PRINT AS TAB(25) BS

40 DATA "G. T. JONES","$25.00"

RUN

NAME AMOUNT
G. T. JONES $25.00
Ok

TAN (X)

8K, Extended, Disk

Returns the tangent of X in radians. TAN(X) is
calculated in single precision. If TAN
overflows, the "Overflow"” error message is

displayed, machine infinity with the appropriate
sign is supplied as the result, and execution
continues.

10 Y = Q*TAN(X)/2

‘BASIC-80 -FUNCTIONS

3.41 USR

Format :
Versions:

Action:

Example:

3.42 VAL

Format:
Versions:

Action:

Example:

Page 3-23

’ USR[<digit>] (X)

8K, Extended, Disk

Calls the user's assembly language subroutine
with the argument X. <digit> is allowed in the
Extended and Disk versions only. <digit> is in
the range 0 to 9 and corresponds to the digit
supplied with the DEF USR statement for that
routine. If <digit> is omitted, USRO is.

assumed. See Appendix x.

40 B T*SIN(Y)
50 C USR(B/2)
D

USR(B/3)

60

VAL (XS)
8K, Extended, Disk

Returns the numerical value of string XS. The
VAL function also strips leading blanks, tabs,
and linefeeds from the argument string. For
example,

VAL(" -~3)
returns -3.

10 READ NAMES,CITYS,STATES,ZIPS

20 IF VAL(ZIP$)<90000 OR VAL(ZIPS)>96699 THEN
PRINT NAMES TAB(25) "OUT OF STATE"

30 IF VAL(ZIP$)>=90801 AND VAL(ZIP$)<=90815 THEN
PRINT NAME$ TAB(25) "LONG BEACH" :

.
.

See the STRS function for numeric to string

conversion.

BASIC-80 FUNCTIONS Page 3-24

3.43 VARPTR

Format 1:
Versions:
Format 2:
Version:

Action:

NOTE:

Example:

VARPTR (<variable name>)
Extended, Disk
VARPTR(#<file number>)
Disk

Format 1: Returns the address of the first byte
of data identified with <variable name>. A
value must be assigned to <variable name> prior
to execution of VARPTR. Otherwise an "Illegal
function call" error results. Any type variable
name may be used (numeric, string, array), and
the address returned will be an integer in the
range 32767 to -32768. If a negative address is

returned, add it to 65536 to obtain the actual

address.

VARPTR is usually used to obtain the address of
a variable or array so it may be passed to an
assembly language subroutine. A function call
of the form VARPTR(A(0)) is usually specified
whén passing an array, SO that the
lowest-addressed element of the array is
returned.

All simple variables should be assigned before
calling VARPTR for an array, because the
addresses of the arrays change whenever a new
simple variable is assigned.

Format 2: For sequential files, returns the
starting address of the disk I/O buffer assigned
to <file number>. For random files, returns the

address of the FIELD buffer assigned to <file
number>.

In Standalone Disk BASIC, VARPTR(#<file number>)
returns the first byte of the file block. See
Appendix H.

100 X=USR(VARPTR(Y))

APPENDIX A

New Features in BASIC-80, Release 5.0

The execution of BASIC programs written under Microsoft
BASIC, release 4.51 and earlier may be affected by some of
the new features in release 5.0. Before attempting to run
such programs, check for the following:

1. New reserved words: CALL, CHAIN, COMMON, WHILE,
WEND, WRITE, OPTION BASE, RANDOMIZE.

2. Conversion from floating point to integer values

‘ results in rounding, as opposed to truncation.
This affects not only assignment statements (e.g.,
I$=2.5 results in I%=3), but also affects function
and statement evaluations (e.g., TAB(4.5) goes to
the 5th position, A(1.5) yeilds A(2), and X=1l.5
MOD 4 yields 0 for X).

3. The body of a FOR...NEXT loop 1is skipped if the
initial wvalue of the 1loop times the sign of the
step exceeds the final value times the 31gn of the
step. See Section 2.22.

4., Division by zero and overflow no longer produce
fatal errors. See Section 1.8.1.2.

5. The RND function has been changed so that RND with
no argument is the same as RND with a positive
argument. The RND function generates the same
sequence of random numbers with each RUN, unless
RANDOMIZE is used. See Sections 2.53 and 3.30.

6. The rules for PRINTing single prec151on and double
precision numbers have been changed. See Section
2.49.

7. String space is allocated dynamically, and the
first argument in a two-argument CLEAR statement
sets the end of memory. The second argument sets
the amount of stack space. See Section 2.4.

10.

11.

12.

13.

Page A=2

Responding to INPUT with too many or too few items,
or with non-numeric characters instead of digits,
causes the message "?Redo from start" to be
printed. If a single variable 1is requested, a
carriage return may be entered to indicate the
default values of 0 for numeric input or null for
string input. However, if more than one variable
is requested, entering a carriage return will cause
the "?Redo from start" message to be vprinted
because too few items were entered. No assignment
of input values 1is made until an acceptable
response is given. - :

There are two new field formatting characters for
use with PRINT USING. An ampersand is used for
variable length string fields, and an underscore
signifies a literal character in a format string.

If the expression supplied with the WIDTH statement
is 255, BASIC uses an "infinite" line width, that
is, it does not insert carriage returns. WIDTH
LPRINT may be used to set the line width at the
line printer. See Section 2.66.

The at-sign and underscore are no longer used as
editing characters.

Variable names are significant up to 40 characters
and can contain embedded reserved words. However,
reserved words must now be delimited by spaces. To
maintain compatibility with earlier versions of
BASIC, spaces will be automatically inserted
between adjoining reserved words and variable
names. WARNING: This insertion of spaces may
cause the end of a line to be truncated if the line
length is close to 255 characters.

BASIC programs may be saved in a protected binary
format. See SAVE, Section 2.60.

APPENDIX B

BASIC-80 Disk I/O

Disk I/0 procedures for the beginning BASIC-80 wuser are
examined in this appendix. If you are new to BASIC-80 or if
you're getting disk related errors, read through these
procedures and program examples to make sure you're using
all the disk statements correctly. _

Wherever a filename is required in a disk command or
statement, use a name that conforms to your operating
system's requirements for filenames. The CP/M operating
system will append a default extension .BAS to the filename
given in a SAVE, RUN, MERGE or LOAD command.

B.1 PROGRAM FILE COMMANDS

Here is a review of the commands and statements used in
program file manipulation.

SAVE <filename>[,A] Writes to disk the program that is

currently residing in memory.
Optional A writes the program as a
series of ASCII characters.

(Otherwise, BASIC uses a compressed
binary format.)

LOAD <filename>[,R] Loads the program from disk into
memory. Optional R runs the program
immediately. LOAD always deletes the
current contents of memory and closes
all files before LOADing. If R .1is
included, however, open data files are
kept open. Thus programs can be
chained or loaded 1in sections and
access the same data files.

Page B=2

RUN <filename>(,R] RUN <filename> loads the program from

- disk into memory and runs it. ROUN
deletes the current contents of memory
and closes all files before loading
the program. If the R option 1is
included, howewver, all open data files
are kept open. .

MERGE <filename> Loads the program from disk into
memory but does not delete the current
contents of memory. The program line
numbers on disk are merged with the
line numbers in memory. If two lines
have the same number, only the line
from the disk program is saved. After
a MERGE command, the "merged" program
resides in memory, and BASIC returns

to command level.

RILL <filename> ' Deletes the file from the disk.
<filename> may be a program file, or a
sequential or random access data file.

NAME <old filename> To change the name of a disk file,
AS<new filename> execute the NAME statement, NAME
: <oldfile> AS <newfile>. NAME may be
used with program files, random files,
or sequential files.

B.2 PROTECTED FILES

" If you wish to save a program in an encoded binary format,
use the '"Protect"™ option with the SAVE command. For
example:

SAVE "MYPROG",P

A program saved this way cannot be listed or edited. You
may also want to save an unprotected copy of the program for
listing and editing purposes.

B.3 DISK DATA FILES - SEQUENTIAL AND RANDCM I/0

There are two types of disk data files that may be created
and accessed by a BASIC-80 program: sequential files and
random access files.

Page B-3

B.3.1 Sequential Files

Sequential files are easier to create than random files but
are 1limited in flexibility and speed when it comes to
accessing the data. The data that 1is written to a
sequential file is stored, one item after another
(sequentially), in the order it is sent and is read back in

the same way.

The statements and functions that are used with sequential
files are: :

OPEN PRINT# INPUT# WRITE#
PRINT4# USING LINE INPUT#

CLOSE EOF LoC

The following program steps are required to create a
sequential file and access the data in the file:

1. OPEN the file in "O" mode. OPEN "O",#1,"DATA"

2. Write data to the file PRINT#1,A$;BS$;CS

using the PRINT# statement.
(WRITE# may be used instead.)

3. To access the data in the CLOSE #1
file, you must CLOSE the file OPEN "I",#1,"DATA"
and reOPEN it in "I" mode.

4. Use the INPUT# statement to INPUT#1,X$,Y$,28
read data from the sequential
file into the program.

Program B-1l is a short program that creates a sequential
file, "DATA", from information you input at the terminal.

L3

Page B-4

10 OPEN "O",%#1,"DATA"

20 INPUT "NAME";NS$

25 IF NS="DCONE" THEN END

30 INPUT "DEPARTMENT" ;DS

40 INPUT "DATE HIRED";HS

50 PRINT#1,NS$;",";D$;",";HS
60 PRINT:GOTO 20

RUN

NAME? MICKEY MOUSE
DEPARTMENT? AUDIO/VISUAL AIDS
DATE HIRED? 01/12/72

NAME? SHERLOCK HOLMES
DEPARTMENT? RESEARCH
DATE HIRED? 12/03/65

NAME? EBENEEZER SCROOGE
DEPARTMENT? ACCOUNTING
DATE HIRED? 04/27/78

NAME? SUPER MANN
DEPARTMENT? MAINTENANCE
DATE HIRED? 08/16/78

NAME? etc.

PROGRAM B-1 - CREATE A SEQUENTIAL DATA FILE

Page B=5

Now look at Program B-2. It accesses the file T"DATA" that
was created in Program B-l1 and displays the name of everyone

hired in 1978. =

o

10 OPEN "I",#1,"DATA"

20 INPUT#1,N$,D$,HS

30 IF RIGHTS(HS$,2)="78" THEN PRINT NS$
40 GOTO 20

RUN : : . . , C))
EBENEEZER SCROOG -
SUPER MANN

Input past end in 20
Ok

PROGRAM B-2 - ACCESSING A SEQUENTIAL FILE

Program B-2 reads, sequentially, every item in the file.
When all the data has been read, line 20 causes an "Input
past end" error. To avoid getting this error, insert 1line
15 which uses the EOF function to test for end-of-file:

15 IF EOF(l) THEN END
and change line 40 to GOTO 15.

A program that creates a sequential file can also write
formatted data to the disk with the PRINT# USING statement.
For example, the statement

PRINT#1 ,USING"####o##, ";A,B,C,D

could be used to write numeric data to disk without explicit
delimiters. The comma at the end of the format string
serves to separate the items in the disk file.

The LOC function, when used with a sequential file, returns
the number of sectors that have been written to or read from
the file since it was OPENed. A sector is a 128-byte block

of data.

B.3.1l.1 Adding Data To A Sequential File -

If you have a sequential file residing on disk and later
want to add more data to the end of it, you cannot simply
open the file in "O" mode and start writing data. As soon
as you open a sequential file in "O" mode, you destroy its
current contents. The following procedure can be used to
add data to an existing file called "NAMES".

Page B-6

1. OPEN "NAMES" in "I" mode.
2. OPEN a second file called "COPY" in "O" mode.
3. Read in the data in "NAMES" and write it to "Ccopy".

4. CLOSE "NAMES" and KILL it.
5. Write the new info;mation.to "COPY".
6. Rename "COPY" as "NAMES" and CLOSE.

7. Now there is a file on disk called "NAMES" that
includes all the previous data plus the new data
you just added.

Program B-3 illustrates this technique. It can be used to
create or add onto a file called NAMES. This program also
illustrates the use of LINE INPUT4# to read strings with
embedded commas from the disk file. Remember, LINE INPUT#
will read in characters from the disk until it sees a
carriage return (it does not stop at quotes or commas) oOr
until it has read 255 characters.

Page B-~7

10 ON ERROR GOTO 2000

20 OPEN "I",#1,"NAMES"

30 REM IF FILE EXISTS, WRITE IT TO "COPY"
40 OPEN "O",#2,"COPY"

50 IF EOF(l) THEN 90

60 LINE INPUT#1,AS$

70 PRINT#2,AS$

80 GOTO 50

90 CLOSE #1

100 RKILL "NAMES"

110 REM ADD NEW ENTRIES TO FILE

120 INPUT "NAME";NS$
130 IF N$="" THEN 200 'CARRIAGE RETURN EXITS INPUT LOOP

140 LINE INPUT "ADDRESS? ";AS
150 LINE INPUT "BIRTHDAY? ";BS$
160 PRINT#2,NS

170 PRINT#2,AS

180 PRINT#2,BS

190 PRINT:GOTO 120

200 CLOSE
205 REM CHANGE FILENAME BACK TO "NAMES"

210 NAME "COPY" AS "NAMES"
2000 IF ERR=53 AND ERL=20 THEN OPEN "O",#2,"COPY":RESUME 120

2010 ON ERROR GOTO 0

PROGRAM B-3 - ADDING DATA TO A SEQUENTIAL FILE

The error trapping routine in line 2000 traps a "File does
not exist™ error in 1line 20. If this happens, the
statements that copy the file are skipped, and "COPY" |is
created as if it were a new file.

B.3.2 Random Files

Creating and accessing random files requires more program
steps than sequential files, but there are advantages to
using random files. One advantage is that random files
require less room on the disk, because BASIC stores them in
a packed binary format. (A sequential file is stored as a
series of ASCII characters.)

The biggest advantage to random files is that data can be
accessed randomly, i.e., anywhere on the disk -- it is not
necessary to read through all the information, as with
sequential files. This is possible because the information
is stored and accessed in distinct units called records and
each record is numbered.

The statements and functions that are used with random files
are:

Page B-8

OPEN FIELD LSET/RSET GET

PUT CLOSE LoC

MKIS cvI
MKSS$ cvs
MKDS CvD

B.3.2.1 (Creating A Random File - ,
The following program steps are required to create a random
file.

1. OPEN the file for random OPEN "R",#1,"FILE",32
access ("R" mode). This example
specifies a record length of 32
bytes. If the record length is
omitted, the default is 128

bytes.
2. Use the FIELD statement to FIELD #1 20 AS NS,
allocate space in the random . 4 AS AS, 8 AS PS

buffer for the variables that
will be written to the random

file.

3. Use LSET to move the data LSET NS$=X$
into the random buffer. LSET AS=MKSS$ (AMT)
Numeric values must be made LSET PS$=TELS

into strings when placed in

the buffer. To do this, use the
"make” functions: MKI$ to

make an integer value into a
string, MKS$ for a single
precision value, and MRDS for

a double precision value.

4. Write the data from PUT #1,CODES%
the buffer to the disk
using the PUT statement.

Look at Program B-4. It takes information that is input at
the terminal and writes it to a random file. Each time the
PUT statement is executed, a record is written to the file.
The two-digit code that is input in line 30 becomes the
record number.

Page B-9

NOTE

Do not use a FIELDed string
variable in an INPUT or LET
statement. This causes the
pointer for that variable to

point into string space
instead of the random file
buffer.

10 OPEN "R",#1,"FILE",32

20 FIELD #1,20 AS N$, 4 AS A$, 8 AS P$
30 INPUT "2-DIGIT CODE";CODE%
40 INPUT "NAME";XS$

50 INPUT "AMOUNT";AMT

60 INPUT "PHONE";TELS$:PRINT
70 LSET NS$=X$

80 LSET AS$=MKSS (AMT)

90 LSET PS$=TELS

100 PUT #1,CODES%

110 GOoTO 30

PROGRAM B-4 - CREATE A RANDOM FILE

B.3.2.2 Access A Random File ~-
The following program steps are required to access a random

file:

1. OPEN the file in "R" mode. OPEN "R",#1,"FILE",32
2. Use the FIELD statement to FIELD #1 20 AS NS,
allocate space in the random 4 AS AS, 8 AS PS

buffer for the variables that
will be read from the file.

NOTE:

In a program that performs both
input and output on the same random
file, you can often use just one
OPEN statement and one FIELD
statement.

Page B-10

3. Use the GET statement to move GET #1,CODE%
the desired record into the
random buffer.

4. The data in the buffer may PRINT N$
now be accessed by the program. PRINT CVS(AS)
Numeric values must be converted
back to numbers using the
"convert" functions: CVI for
integers, CVS for single
precision values, and CVD
for double precision values.

Program B-5 accesses the random file "FILE" that was created
in Program B-4. By inputting the three-digit code at the
terminal, the information associated with that code is read
from the file and displayed.

10 OPEN "R",#1,"FILE",32

20 FIELD #1, 20 AS NS, 4 AS A$, 8 AS PS
30 INPUT "2-DIGIT CODE";CODE%

40 GET #1, CODE%

50 PRINT NS

60 PRINT USING "SS###.##";CVS(AS)

70 PRINT PS$:PRINT

80 GOTO 30

PROGRAM B-5 - ACCESS A RANDOM FILE

The LOC function, with random files, returns the "ecurrent
record number.” The current record number is one plus the
last record number that was used in a GET or PUT statement.
For example, the statement

IF LOC(l)>50 THEN END

ends program execution if the current record number in
file#l is higher than 50.

Program B-6 is an inventory program that illustrates random
file access. In this program, the record number is used as
the part number, and it is assumed the inventory will
contain no more than 100 different part numbers. Lines
900-960 initialize the data file by writing CHR$(255) as the
first character of each record. This is used later (line
270 and line 500) to determine whether an entry already
exists for that part number.

Lines 130-220 display the different inventory functions thaﬁ
the program performs. When you type in the desired function
number, line 230 branches to the appropriate subroutine.

120
125
130
135
140
150
160
170
180
220
225

230
240
250
260
270

280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630

Page B=-11.

OPEN"R",#1,"INVEN.DAT", 39
FIELD#1,1 AS F$,30 AS D$, 2 AS Q$,2 AS R$,4 AS PS
PRINT:PRINT "FUNCTIONS:":PRINT
PRINT 1,"INITIALIZE FILE"
PRINT 2,"CREATE A NEW ENTRY"
PRINT 3,"DISPLAY INVENTORY FOR ONE PART"
PRINT 4,"ADD TO STOCK"
PRINT 5,“SUBTRACT FROM STOCK"
PRINT 6,"DISPLAY ALL ITEMS BELOW REORDER LEVEL"
PRINT:PRINT: INPUT"FUNCTION" ; FUNCTION
IF (FUNCTION<1l)OR(FUNCTION>6) THEN PRINT
"BAD FUNCTION NUMBER":GO TO 130
ON FUNCTION GOSUB 900,250,390,480,560,680
GOTO 220
REM BUILD NEW ENTRY

GOSUB 840
IF ASC(F$)<>255 THEN INPUT"OVERWRITE";AS:

IF AS<>"Y" THEN RETURN
LSET F$=CHRS$ (0)
INPUT "DESCRIPTION";DESCS
LSET D$=DESCS$ ’
INPUT "QUANTITY IN STOCK";Q%
LSET Q$=MKIS$ (Q%)
INPUT "REORDER LEVEL";R$%
LSET R$=MKIS$ (R%)
INPUT "UNIT PRICE";P
LSET P$=MKS$ (P)
PUT4#1,PARTS%
RETURN
REM DISPLAY ENTRY

GOSUB 840
IF ASC(F$)=255 THEN PRINT "NULL ENTRY":RETURN

PRINT USING "PART NUMBER ###";PARTS

PRINT D$
PRINT USING "QUANTITY ON HAND #####";CVI(QS)

PRINT USING "REORDER LEVEL #####";CVI(RS)
PRINT USING "UNIT PRICE $S##.##";CVS(P$)
RETURN

REM ADD TO STOCK

GOSUB 840

IF ASC(F$)=255 THEN PRINT "NULL ENTRY" :RETURN
PRINT D$:INPUT "QUANTITY TO ADD ";A%
Q%=CVI (QS) +A%

LSET QS$=MKIS (Q%)

PUT41,PARTS

RETURN

REM REMOVE FROM STOCK

GOSUB 840

IF ASC(F$) =255 THEN PRINT "NULL ENTRY":RETURN

PRINT DS

INPUT "QUANTITY TO SUBTRACT";S%

Q%=CVI(QS)

IF (Q%-S5%)<0 THEN PRINT "ONLY";Q%;" IN STOCK":GOTO 600
0%=Q%-5%) o

Page B-12

640 IF Q%=<CVI(R$) THEN PRINT "QUANTITY NOW";Q%;
" REORDER LEVEL";CVI(RS)

650 LSET Q$=MKIS (Q%)

660 PUT#%#1,PART%

670 RETURN '

680 DISPLAY ITEMS BELOW REORDER LEVEL

690 FOR I=1 TO 100

710 GET#1,I

720 IF CVI(Q$)<CVI(R$) THEN PRINT D$;" QUANTITY";
CVI(Q$) TAB(50) "REORDER LEVEL";CVI(RS)

730 NEXT I

740 RETURN

840 INPUT "PART NUMBER";PARTS%

850 IF(PART%<1)OR(PART$>100) THEN PRINT "BAD PART NUMBER":

» GOTO 840 ELSE GET#1,PART%:RETURN

890 END

900 REM INITIALIZE FILE

910 INPUT "ARE YOU SURE";B$:IF B$<>"Y" THEN RETURN

920 LSET FS$=CHR$(255)

930 FOR I=1 TO 100

940 PUT#1,I

950 NEXT I

960 RETURN

PROGRAM B-6 - INVENTORY

APPENDIX C

Assembly Languade Subroutines

All versions of BASIC-80 have provisions for interfacing
with assembly language subroutines. The USR function allows
assembly language subroutines to be called in the same way
BASIC's intrinsic functions are called.

NOTE

The addresses of the DEINT,
GIVARBF, MAKINT and FRCINT
routines are stored in
locations that must be
supplied individually for
different implementations of
BASIC.

C.l1 MEMORY ALLOCATION

Memory space must be set aside for an assembly language
subroutine before it can be loaded. During initialization,
enter the highest memory location minus the amount of memory
needed for the assembly language subroutine(s). BASIC uses
all memory available from its starting location up, so only
the topmost locations in memory can be set aside for user
subroutines.

When an assembly language subroutine is called, the stack
pointer 1is set up for 8 levels (16 bytes) of stack storage.
If more stack space is needed, BASIC's stack can be saved
and a new stack set up for use by the assembly language
subroutine. BASIC's stack must be restored, however, before
returning from the subroutine.

Page c-2

The assembly language subroutine may be loaded into memory
by means of the system monitor, or the BASIC POKRE statement,
or (if the user has the MACRO-80 or FORTRAN-80 package)
routines may be assembled with MACRO-80 and loaded using

LINR-80.

C.2 USR FUNCTION CALLS - 8K BASIC

The starting address of the assembly language subroutine
~ must be stored in USRLOC, a two-byte location in memory that
is supplied individually with different implementations of
BASIC~80. with 8K BASIC, the starting address may be POKEd
into USRLOC. Store the low order byte first, followed by
the high order byte.

The function USR will call the routine whose address is in
USRLOC. Initially USRLOC contains the address of ILLFUN,
the routine that gives the "Illegal function call" error.
Therefore, if USR is called without changing the address in
USRLOC, an "Illegal function call"” error results.

‘The format of a USR function call is
USR(argument)

where the argument is a numeric expression. To obtain the
argument, the assembly language subroutine must call the
routine DEINT. DEINT places the argument into the D,E
register pair as a 2-byte, 2's complement integer. (If the
argument is not in the range -32768 to 32767, an "Illegal
function call®™ error occurs.)

To pass the result back from an assembly language
subroutine, load the value in register pair [A,B], and call
the routine GIVABF. If GIVABF is not called, USR(X) returns
X. To return to BASIC, the assembly language subroutine
must execute a RET instruction.

For example, here is an assembly language subroutine that
multiplies the argument by 2:

USRSUB: CALL DEINT ;put arg in D,E
: ' XCHG ;move arg to H,L
DAD H :H,L=H,L+H,L
MOV A,EH ;move result to A,B
MOV B, L .
JMP GIVABF ;pass result back and RETurn

Note that valid results will be obtained from this routine
for arguments in the range -16384<=x<=16383. The single
‘imstruction JMP GIVABF has the same effect as:

Page C-3

CALL GIVABF)
RET <
To return additional values to the program, locad them into
memory and read them with the PEEK function. ‘

There are several methods by which a program may call more
than one USR routine. For example, the starting address of
each routine may be POREd into USRLOC prior to each USR
call, or the argument to USR could be an index into a table
of USR routines. :

C.3 USR FUNCTION CALLS - EXTENDED AND DISK BASIC

In the Extended and Disk versions, the format of the USR
function is ‘

USR[<digit>] (argument)

where DIGIT> is from 0 to 9 and the argument is any numeric
or string expression. <digit> specifies which USR routine
is being called, and corresponds with the digit supplied in
the DEF USR statement for that routine. If <digit> is
omitted, USRO is assumed. The address given in the DEF USR
statement determines the starting address of the subroutine.

When the USR function call is made, register A contains '‘a
value that specifies the type of argument that was given.
The value in A may be one of the following: '

Value in A Type of Argument
2 Two-byte integer (two's complement)
3 String
4 Single precision floating point number
8 Double precision floating point number

If the argument is a number, the [H,L] register pair points
to the Floating Point Accumulator (FAC) where the argument
is stored.

If the argument is an integer:

FAC-3 contains the lower 8 bits of the argument and
FAC-2 contains the upper 8 bits of the argument.

If the argument is a single precision floating point number :

FAC-3 contains the lowest 8 bits of mantissa and

Fw Page C-4

FAC-2 contains the middle 8 bits of mantissa and
FAC-1l contains the highest 7 bits of mantissa
with leading 1 suppressed (implied). Bit 7 is
the sign of the number (0O=positive, l=negative).
FAC is the exponent minus 128, and the binary
point is to the left of the most significant
bit of the mantissa.

If the argument is a double precision floating point number:

FAC-7 through FAC-4 contain four more bytes
of mantissa (FAC-7 contains the lowest 8 bits).

_If the argument is a string, the [D,E] register pair points
to 3 bytes called the "string descriptor.” Byte 0 of the
'string descriptor contains the length of the string (0 to
255). Bytes 1 and 2, respectively, are the lower and upper
8 bits of the string starting address in string space.

CAOTION: If the argument is a string literal in the
program, the string descriptor will point to program text.
Be careful not to alter or destroy your program this way.
To avoid unpredictable results, add +"" to the string
literal in the program. Example:

A$ = "BASIC-80"+""

This will copy the string literal into string space and will
prevent alteration of program text during a subroutine call.

Usually, the value returned by a USR function is the same
type (integer, string, single precision or double precision)
as the argument that was passed to it. However, calling the
MARINT routine returns the integer in [E,L] as the value of
the function, forcing the value returned by the function to
"be integer. To execute MARINT, use the following sequence
‘to return from the subroutine:

PUSH H :save value to be returned
LHLD XXX ;jget address of MAKINT routine
XTHL :save return on stack and

_ :get back [H,L]
RET sreturn

"Also, the argument of the function, regardless of its type,
‘may be forced to an integer by calling the FRCINT routine to
get the integer value of the argument in [H,L]. Execute the
following routine:

= <LXT H ;get address of subroutine
T . ;continuation
<+ 7 PUSH H ;place on stack
LHLD XXX ;get address of FRCINT
PCHL

'$UB1 : - L] - L] .

Page C-5

C.4 CALL STATEMENT

Extended and Disk BASIC-80 user function calls may also be
made with the CALL statement. The calling sequence used is
the same as that in Microsoft's FORTRAN, COBOL and BASIC

compilers.

A CALL statement with no arguments generates a simple "CALL"
instruction. The corresponding subroutine should return via
a simple "RET." (CALL and RET are 8080 opcodes -~ see an 8080
reference manual for details.) ,

A subroutine CALL with arguments results in a somewhat more
complex calling sequence. For each argument in the CALL
argument list, a parameter is passed to the subroutine.
That parameter is the address of the 1low byte of the
argument. Therefore, parameters always occupy two bytes

each, regardless of type.

The method of passing the parameters depends upon the number
of parameters to pass:

1. If the number of parameters is less than or equal
to 3, they are passed in the registers. Parameter
1 will be in HL, 2 in DE (if present), and 3 in BC
(if present). .

2. If the number of parameters is greater than 3, they
are passed as follows:

1. Parameter 1 in HL.
2. Parameter 2 in DE.

3. Parameters 3 through n in a contiguous data
block. BC will point to the low byte of this
data block (i.e., to the low byte of parameter

3).

Note that, with this scheme, the subroutine must know how
many parameters to expect in - order to f£ind them.
Conversely, the calling program is responsible for passing
the correct number of parameters. There are no checks for
the correct number or type of parameters.

If the subroutine expects more than 3 parameters, and needs
to transfer them to a local data area, there is a system
subroutine which will perform this transfer. This argument
transfer routine is named S$AT (located in the FORTRAN
library, FORLIB.REL), and is called with HL pointing to the
local data area, BC pointing to the third parameter, and A
containing the number of arguments to transfer (i.e., the
total number of arguments minus 2). The subroutine is

Page C~6

responsible for saving the first two parameters before
calling S$AT. For example, if a subroutine expects 5
parameters, it should look like:

SUBR: SHLD Pl :SAVE PARAMETER 1
XCHG
SHLD P2 +SAVE PARAMETER 2
MV A,3 sNO. OF PARAMETERS LEFT
LXT H,P3 :POINTER TO LOCAL AREA
CALL SAT ;s TRANSFER THE OTHER 3 PARAMETERS

(Body of subroutine]

RET sRETURN TO CALLER
Pl: DS 2 ;SPACE FOR PARAMETER 1
P2: DS 2 ;SPACE FOR PARAMETER 2
P3: DS 6 ;SPACE FOR PARAMETERS 3-5

A listing of the argument transfer routine SAT follows.

00100 ARGUMENT TRANSFER

00200 :[B,C] POINTS TO 3RD PARAM.

00300 :[H,L] POINTS TO LOCAL STORAGE FOR PARAM 3

Q0400 ; [A] CONTAINS THE # OF PARAMS TO XFER (TOTAL=-2)
00500

00600

00700 ENTRY SAT

00800 SAT: XCHG ;SAVE [H,L] IN [D,E]
00900 MOV H,B ‘

01000 MOV L,C :{H,L] = PTR TO PARAMS
01100 ATl: MOV C/M

01200 INX H

01300 MOV B,M

01400 INX H :[B,C] = PARAM ADR
01500 XCHG s [H,L] POINTS TO LOCAL STORAGE
01600 MOV M,C

01700 INX B

01800 MOV M,B

01900 INX H +STORE PARAM IN LOCAL AREA
02000 XCHG :SINCE GOING BACK TO ATl
02100 DCR A ;s TRANSFERRED ALL PARAMS?
02200 JNZ ATl :NO, COPY MORE

02300 RET ;YES, RETURN

Page C-7

When accessing parameters in a subroutine, don't forget that
they are pointers to the actual arguments passed.

NOTE

It is entirely up to the
programmer to see to it that
the arguments in the calling
program match in number, type,
and length with the parameters
expected by the subroutine.
This applies to BASIC
subroutines, as well as those
written in assembly language.

C.5 INTERRUPTS

Assembly language subroutines can be written to handle
interrupts. All interrupt handling routines should save the
stack, register A-L and the PSW. Interrupts should always
be re-enabled before returning from the subroutine., since
an interrupt automatically disables all €further interrupts
once it 1is received. The user should be aware of which
interrupt vectors are free in the particular version of
BASIC that has been supplied. (Note to CP/M users: In CP/M
BASIC, all interrupt vectors are free.)

APPENDIX D

BASIC-80 with the CP/M Operating System

The CP/M version of BASIC-80 (MBASIC) |is supplied on a
standard size 3740 single density diskette. The name of the
file is MBASIC.COM. (A 28K or larger CP/M system 1is
recommended.)

To run MBASIC, bring up CP/M and type the following:
A>MBASIC <carriage return>
The system will reply:

xXxxx Bytes Free

BASIC-80 Version 5.0

(CP/M Version)

Copyright 1978 (C) by Microsoft
Created: dd-mmm-yy

Ok

MBASIC is the same as Disk BASIC-80 as described in this
manual, with the following exceptions:

D.1 INITIALIZATION

The initialization dialog has been replaced by a set of
options which are placed after the MBASIC command to CP/M.
The format of the command line is:

A>MBASIC [<filename>] [/F:<number of files>] [/M:<highest memory location>]
[/S:<maximum record size>]

If <filename> is present, MBASIC proceeds as if a RUN
<filename> command were typed after initialization |is
complete. A default extension of .BAS is used 1if none is
supplied and the filename is less than 9 characters long.
This allows BASIC programs to be executed in batch mode
using the SUBMIT facility of CP/M. Such programs should
include a SYSTEM statement (see below) to return to CP/M
when they have finished, allowing the next program in the

Page D=2

.batch stream to execute.

If /F:<number of files> is present, it sets the number of
disk data files that may be open at any one time during the
execution of a BASIC program. Fach file data block
allocated in this fashion requires 166 bytes of memory. If
the /F option is omitted, the number of files defaults to 3.

The /M:<highest memory location> option sets the highest
memory location that will be used by MBASIC. In some cases
it is desirable to set the amount of memory well below the
Cp/M's FDOS to reserve space for assembly language
subroutines. In all cases, <highest memory location> should
be below the start of FDOS (whose address is contained in
locations 6 and 7). If the /M option is omitted, all memory
up to the start of FDOS is used.

/S:<maximum record size> may be added at the end of the
command line to set the maximum record size for use with
‘random files. The default record size is 128 bytes.

NOTE

<number of files>, <highest
memory location>, and <maximum
record size> are numbers that
may be either decimal, octal
(preceded by &0) or
hexadecimal (preceded by &H).

Examples:

A>MBASIC PAYROLL.BAS Use all memory and 3 files,
load and execute PAYROLL.BAS.

A>MBASIC INVENT/F:6 Use all memory and 6 files,
load and execute INVENT.BAS.

A>MBASIC /M:32768 . Use first 32K of memory and
3 files.

A>MBASIC DATACK/F:2/M:&HS000
H : Use first 36K of memory, 2
files, and execute DATACK.BAS.

D.2 DISK FILES

Disk filenames follow the normal CP/M naming conventions.
All filenames may include A: or B: as the £first two
characters to specify a disk drive, otherwise the currently
selected drive 1is assumed. A default extension of .BAS is

Page D=3

used on LOAD, SAVE, MERGE and RUN <filename> commands if no
"." appears in the filename and the filename is less than 9

characters long.

For systems with CP/M 2.x, large random files are supported.
The maximum logical record number is 32767. 1If a record
size of 256 is specified, then files up to 8 megabytes can
be accessed. '

D.3 FILES COMMAND ' .

Format: FILESI<filename>]

Purpose: To print the names of files residing on the
current disk.

Remarks: If <filename> is omitted, all the files on the
currently selected drive will be 1listed.
<filename> is a string formula which may contain
question marks (?) to match any character in the
filename or extension. An asterisk (*) as the
first character of the filename or extension
will match any file or any extension.

Examples: FILES
FILES "*.BAS"

FILES "B:*. *"
FILES "TEST?.BAS"

D.4 RESET COMMAND

Format: RESET

Purpose: To close all disk files and write the directory
information to a diskette before it is removed

from a disk drive.

Remarks: Always execute a RESET command before removing a
diskette from a disk drive. Otherwise, when the
diskette is used again, it will not have the
current directory information written on the
directory track.

RESET closes all open files on all drives and
writes the directory track to every diskette
with open files. o

a

Page D=4

D.5 LOF FUNCTION

Format: LOF (<file number>)

Action: Returns the number of records present in the
last extent read or written. If the file does
not exceed one extent (128 records), then LOF
returns the true length of the file.

Example: 110 IF NUM$>LOF(l) THEN PRINT "INVALID ENTRY"

D.6 EQF

With CP/M, the EOF function may be used with random filés.
If a GET is done past the end of file, EOF will return -1.

This may

be used to find the size of a file using a binary

search or other algorithm. :

D.7 MISCELLANEQUS

1.
2'

CSAVE and CLOAD are not implemented.

To return to CP/M, use the SYSTEM command or
statement. SYSTEM closes all files and then
performs a CP/M warm start. Control-C always
returns to MBASIC, not to CP/M.

FRCINT is at 103 hex and MARINT is at 105 hex.
(Add 1000 hex for ADDS versions, 4000 for SBC Ce/M
versions.)

APPENDIX E

BASIC-80 with the ISIS~II Operating System

With ISIS-II, BASIC-80 is the same as described in this
manual, with the following exceptions:

E.1 INITIALIZATION

The initialization dialog has been replaced by a set of
options which are placed after the MBASIC command to
ISIS-II. The format of the command line is:

~-MBASIC [<filename>][/F:<number of files>][/M:<highest memory location>]
[/S:<maximum record size>]

If <filename> is present, BASIC proceeds as if a RUN
<filename> command were typed after initialization 1is
complete. A default extension of .BAS is used if none is

supplied.

If /F:<number of files> is present, it sets the number of
disk data files that may be open at any one time during the
execution of a BASIC program. The maximum is six and the
default is three. The /M:<highest memory location> option
sets the highest memory location that will be used by BASIC.
Use this option to reserve memory locations above BASIC for
assembly language subroutines. /S:<maximum record size> may
be added at the end of the command line to set the maximum
record size for use with random files. The default record
size is 128 bytes.

At initialization, the system will reply:

xXxXxXxX Bytes Free

BASIC-80 Version x.x

(ISIS~I1 Version)

Copyright 1978 (C) by Microsoft

Page E-2

E.2 LINE PRINTER 1I/0

To send output to the printer during execution of a BASIC
program, open the line printer as if it were a disk file:

50 N=4
100 OPEN "O",N,":LP:"

120 PRINT #N,A,B,C

Sirice BASIC buffers disk I/0, you may want to force buffers
out by CLOSEing the printer channel.

T6 LIST a program on the line printer, use:

SAVE":LP:",A

E.3 ATTRIB STATEMENT

In 1ISIS-II BASIC-80, the ATTRIB statement sets file
attributes. The format of the statement is:

ATTRIB <filename string>,<attribute string>

The attribute string consists of F, W, S or I for the
attribute, followed by a 1l to set the attribute or a 0 to
reset.

Examples:

ATTRIB "INFO.DAT","Wl"

ATTRIB "GHOST.BAS","Il"
ATTRIB ":Fl:SYSFIL","WlF1S1lIl"
ATTRIB AS$,BS :

E.4 MISCELLANEQUS

Note these other differences for ISIS-II BASIC:

1. MARINT is located at 3903 hex, and GIVINT is
located at 3905 hex.

2. There 1is no PFILES command in ISIS-II BASIC.
Filenames do not default to .BAS on SAVEs, LOADs,
and MERGEs.

APPENDIX F

BASIC-80 with the TERDOS Operating System

The operation of BASIC-80 with the TEKDOS operating system

is the

same as described in this manual with the following

exceptions:

l.

At initialization, BASIC asks MEMORY SIZE? If you
respond with a carriage return, BASIC will use all
available memory. If you respond with a memory
location (in decimal), BASIC will use memory only
up to that location. This lets you reserve space
at the top of memory for assembly language
subroutines. '

The number of disk files that may be open at one
time defaults to 5. :

LPRINT and LLIST are not implemented. Instead,
open a file to the printer.

TEKDOS does not support random disk 1I/O. The
corresponding BASIC-80 statements (PUT, GET,
OPEN"R", etc.) are inoperable under TEKDOS.

Control-C works only once due to a bug in TEKDOS.
If you interrupt a running program or a LIST
command with Control-C, BASIC appears to be in
"single statement" mode. To clear this condition,
exit BASIC with a SYSTEM command and re-enter BASIC
with an XEQ BASIC. Avoid using the AUTO command,
since it requires a Control-C to return to BASIC
command level.

APPENDIX G
BASIC-80 with the INTEL SBC and MDS Systems

G.1 INITIALIZATION

The paper tape of BASIC-80 supplied for SBC and MDS systems
is in Intel-compatible hex format. Use the monitor's R
command to load the tape, then execute the G command to
start BASIC-80. The command is: :

.G4000

BASIC will respond:
Memory size?

If you want BASIC to use all available RAM, Jjust type a
carriage return. If you want to reserve space at the top of
memory for machine language subroutines, enter the highest
memory address (in decimal) that BASIC may use.

Terminal Width?
(8K versions only) Respond with the number of characters for
the output 1line width in PRINT statements. The default is
72 characters. (Extended versions use WIDTH command.)

Want SIN-COS~TAN-ATN?

Type Y to retain these functions, type N to delete them, or
type A to delete ATN only.

G.2 SUBROUTINE ADDRESSES

In the 8K version of SBC and MDS BASIC-80, DEINT is 1located
at 0043 hex and GIVABF is located at 0045 hex. USRLOC is at
xxxx hex. In the Extended version, FRCINT 1is located at
xxxx hex, and MAKINT is located at xxxx hex.

Page G-~2

G.3 LLIST AND LLPRINT

LLIST and LPRINT are not implemented.

ie

APPENDIX H
Standalone Disk BASIC

Standalone Disk BASIC is an easily implemented,
self-contained version of BASIC-80 that runs on almost any
8080 or 280 based disk hardware without an operating system.
Standalone Disk BASIC incorporates several unique disk I/O
methods that make faster and more efficient wuse of disk

access and storage.

Random access with Standalone BASIC is faster than other
disk operating systems because the file allocation table is
kept in memory and updated periodically on the diskette.
Therefore, there 1is no need for index blocks for random
files, and there is no need to distinguish between random
and sequential files. Because there are no index blocks,
there is no large per-file-overhead either in memory or on
disk. Binary SAVEs and LOADs are also faster because they
are optimized by cluster, i.e., an entire cluster is read or
written at one time, instead of a single sector.

To initialize Standalone Disk BASIC, insert the BASIC
diskette and power up the system. 1In one- or two-drive
systems, BASIC asks if there are two drives. In systems
with more than two drives, BASIC asks for the number of
drives. BASIC then asks how many files, i.e., how many disk
files may be open at one time. Answer with a number from 0
to 15, or, for a default of 1 file per drive, just enter a
carriage return.

The operation of Standalone Disk BASIC is the same as Disk
BASIC-80 as described in this manual, with the following

exceptions:

H.1l FILENAMES
The format for disk filenames is:

[drive#:] filename[.extension]

The first drive is 1.

Page. H-2 ‘

Disk filenames are six characters with an optlonal

three~character extension that 1is preceded by a decxmal

point. If a decimal point appears in a filename after fewer

than six characters, the name 1is blank-filled to six

characters and the next three characters are the extension.

If the filename is six or fewer characters with no decimal -
point, there is no extension. If the filename is more than’

six characters, BASIC inserts a decimal point after the

sixth character and uses the next three characters as an

extension. (Any additional characters are ignored.)

H.2 DISK FILES

The FILES command prints the names of the files residing on

a disk. The format is: [L]FILES[<drive number>]

LFILES outputs to the line printer. In addition to the

filename, the size of each file, in clusters, is output. A

cluster is the minimum unit of allocation for a file -- it

is one-half of a track. Filenames of files created with

OPEN or ASCII SAVE are listed with a space between the name

and extension. Filenames of binary files created w1th

- binary SAVE are listed with a decimal p01nt between the name?®
and extension. The protected file option with SAVE 1s neE

supported in Standalone Disk BASIC. e

H.3 FPOS

The FPOS function: { | ;
FPOS(<file number>) 1" |

is the same as BASIC-SO'S‘LOC function except it raturns'tgé;

number of the physical sector where <filenumber> is located.
(BASIC-80's LOC function and CP/M BASIC-80's LOF function

are also implemented.)

F.4 DSKIS/DSKOS

The DSRO$ statement:

DSKO$<dr1ve> <track> <sector>,<string expresszon>

o ,_u.,.ju

w:ites the string on the specified sector. The maxlmu@
length for the string is 128 characters. A string of fewerw
than 128 characters is zero-filled at the end to.; 128z
characters.

- " Page H-3

DSKI$§ is the complementary function to the DSRO$ statement.
DSK1$ ‘returns the contents of a sector to a string varlable
name. The format is:

: DSKI$(<drive>,<track>,<sector>)
Example: A$=DSKI$(0,I,J)

s,

H.5 MOUNT COMMAND

Before a diskette can be used for file operations (i.e., any
disk I/0 besides DSKI$, DSKO$, or IBM or USR modes), 1t must
be MOUNTed. The format of the command is: ,

MOUNT([<drive>[,<drive>...]]

MOUNT with no arguments mounts all drives. When a diskette
is mounted, BASIC reads the File Allocation Table (see
Section H.1ll.2) from the diskette into memory and checks it
for _errors. If there are no errors, the disk is mounted.
1f. an error is found, BASIC reads one or both of the back-up
allqcatlon tables from the diskette in an attempt to mount
tha .disk; and a warnlng message, "x copies of allocation
bad on drive vy", is issued. x is 1 or 2 and y is the drive
number. When a warning occurs, it is a good idea to make a
new copy of the diskette. If all copies of the allocation
table are bad or if a free entry is encountered in the £file
chain, a fatal error--"bad allocation table"--is given and
the diskette will not be mounted.

While a disk is mounted, BASIC occasionally writes the

allocation table to the directory track, but it does not
check for errors unless the read after wrlte attribute is

set for that drive (see SET statement).

L i .

H.6 REMOVE COMMAND

REMOVE is the complement of MOUNT. Before a diskette can be
taken out of the drive, a REMOVE command must be executedg
The format of the command is: '

-

ftad

REMOVE[<drive>[,<drive>...]]

REMOVE writes three copies of the current allocation table
to-'disk and follows the same error-check procedure as MOUNT.
MOUNT and REMOVE replace the RESET command that is. -in

BABIC-80. .

Page H-4

NOTE

ALWAYS do a REMOVE before
taking a diskette out of a
drive. If you do not, the
diskette you took out will not
have an updated and checked
allocation table, and the data
on the next diskette inserted
will be destroyed when the
wrong allocation table is
written to the directory
track.

H.7 SET STATEMENT

The SET statement determines the attributes of the curren£l§
mounted disk drive, a currently open file, or a file that
need not be open. The format of the SET statement isy | mus

SET<drive> | #<file> | <fllename>,<attr1bute string>

<attribute string> is a string of characters that determines
what attributes are set. Any characters other than the

following are ignored: - e
R Read after write p
P Write protect
E EBCDIC conversion (if available)

Attributes are assigned in the following order:

1. MOUNT command T
When a MOUNT is done for a particular drive, the
first byte of the information sector on the
diskette (track 35, sector 20 for £floppy: track
18, sector 13 for minifloppy) contains the
attributes for the disk. (octal wvalues: R=100,
P=20, E=40) . . .

2. SET<drive>,<attribute string> Statement - ooty
This statement sets the current attributes for the
disk, in memory, while it is mounted:i. The
attributes are not permanently recorded and apply
only while the disk is mounted. o o mrerw

3. When a file 1is created, the permanent . file
attributes recorded on the disk will be the- same as
the current drive attributes. , N

Page H-5

- SET<filename>,<attribute string> Statement

8- -
This statement changes the permanent file
attributes that are stored in the directory entry
for that file. It does not affect the drive
attributes.

5. When an existing file is OPENed, the attributes of
the file number are those of the directory entry.
6. SET#<file number>,<attribute string> Statement
This statement changes the attributes for that file
number but does not change the directory entry.
Examples:
SET 1,"R" Force read after write checking on all
output to drive 1 o

SET #1,"R" Force read after write for all output to

file 1 while it is open

SET #1,"P" Give write protect error if any output 1is

attempted to file 1

SET "TEST","P" Protect TEST from deletion and

Yoo modification ‘

SET 1,*" Turn off all attributes for drive 1

od

H.8 ATTRS FUNCTION

{

ATTRS returns a string of the current attributes for a
drive, currently open file, or file that need not be open.
The format of ATTRS is:

ATTRS (<drive> | #<file number> | <filename>)

For example:

SET 1,"R":AS$=ATTRS$ (1) :PRINT AS
R .
Ok

H.9 OPEN STATEMENT .

The format for the OPEN statement in Standalone BASIC is:

P

w O e

s S

+7" OPEN <filename> [FOR <mode>] AS [#]<file number>

where <mode> is one of the following:

¢.1% INPUT -

=# :° QUTPUT
APPEND
IBM

USR

5 Page H-6

The mode determines only the initial positioning within the
file and the actions to be taken if the file does not-exist.®
The action taken in each mode is: e b

INFUT The initial position is at the start of the fi}é;;
o An error is returned if the file is not found, ;

QUTPUT The initial position is at the start of the ~file..
A new file is always created.

APPEND The initial position is at the end of the file.
' An error is returned if the file is not foupé. o

IBM The initial position is after the last DSRIS or
DSKROS. The file is then set up to. write
contiguous. No file search is done. (The same,

effect may be achieved in many cases by altering
the FORMAT program. See Section H.11.2.1.) :

USR Same as IBM mode except, instead of write
contiguous, USRO is called and returns the next’
°track/sector number. The USRO routine should read
the current track/sector from B,C and return the
next location in B,C. When USRO is first called,
B,C contains the . track and sector number of the

previous DSRIS$ or DSKOS.

If ‘the FOR <mode> clause is omitted, the initial position T&
at the start of the file. If the file is not found, it is
created.

Note that variable length records are not supported: in:
Standalone Disk BASIC. All records are 128 bytes in length.

“USR mode is especially useful for creating diskettes - that
*require sector mapping. This is the case if the diskette is
intended for use on another system, for example, a CP/M
system. Instead of opening the file for write contiguous
(IBM mbde), the USRO routine may be used to map the sectors
logically, as required by the other system.

When a file is OPENed FOR APPEND, the file mode is set : to:
APPEND and the record number is set to the last record of
the file. The program may subsequently execute disk . 1/O
statements that move the pointer elsewhere in the file..
When the last record is read, the file mode is reset to FILE
and . the pointer is left at the end of the file. Then, if
~you wish to append another record, execute: ‘ TR

‘GET#n,LOF (n)

‘This positions the pointer at the end of the £ile
preparation for appending. Lo

At any one time, it is possible to have a particular!

emn o | ‘ : Page H-7

Far,”

filename OPEN under more than cne file number. This‘allqws
different attributes to be used for different purposes. Or,
for program clarity, you may wish to use different file
numbers for different methods of access. Each file number
has a different buffer, so changes made under one file are
not accessible to (or affected by) the other numbers until
that record is written (e.g., GET#n,LOC(n)). :

[

H.10 - DISK I/0

A GET or PUT (i.e., random access) cannot be done on a file
that” is OPEN FOR IBM or OPEN FOR USR. Otherwise, GET/PUT
may be executed along with PRINT#/INPUT# on the ' same file,
which makes midfile updating possible. “The statement
formats for GET, PUT, PRINT#, and INPUT# are the same as
those in 'BASIC-80. The action of each statement in
Standalone BASIC is as follows: '

&

GET. If the "buffer changed" flag 1is set, write the
¢ buffer to disk. Then execute the GET (read the

; record into the buffer), and reset the position

- for sequential I/O to the beginning of the buffer.

PUT - . - Execute the PUT (write the buffer to the specified
; . record number), and set the "sequential I/O is
illegal™ flag until a GET is done. '

INPUT# - If the buffer is empty, write it if the T"buffer
- ~*" . . changed" flag is set, then read the next buffer.

PRINT# = Set the "buffer changed" flag. If the buffer is
= +.full, write it to disk. Then, if end of file has
' not been reached, read the next buffer.

%

H.10.1 File Format

For a single density floppy, each file requires 137 bytes:
9 % bytes plus the 128-byte buffer. Because the File
Allocation Table keeps random access information for all
files, random and sequential files are identical on the
disk. The only distinction is that sequential files have a
Control-2 (32 octal) as the 1last character of the last
sector. When this sector is read, it is scanned from the
end -for a non-zero byte. If this byte is Control-Z, the
size of the buffer is set so that a PRINT overwrites this
byte. If the byte is not Control-Z, the size is set so the
Iast null seen is overwritten. - = P

Any sequential file can be copied in random mode and remain
identical. If a file is written to disk in random mode

Page H-8

P 4 o d

(i.e., with PUT instead of PRINT) and thea read 4
sequential mode, it will still have proper end of file
detection. 7

H.1l1 DISK ALLOCATION INFORMATION

With Standlone Disk BASIC, storage space on the diskette 1is
allocated beginning with the cluster closest to the current
position of the head. (This method 1is optimized for
writing. .Custom, versions can be optimized for reading.)
Disk allocation information is placed in memory ‘-when the
disk is mounted . and is periodically written back to the
disk. Because this allocation information is kept in
memory, there is no need for index blocks for random files,
and there is no need to distinguish between random and
‘'sequential files.

H.l1ll.1 Directory Format

- On the diskette; each sector of the directory track contains
eight file entries. Each file entry is 16 bytes long and
formatted as follows: g

Bvytes Usage ..

0-8 ‘ Filename, 1 to 9 characters. The
first character may not be 0 or 255.

9 Attribute:

Octal

200 Binary file

100 Force read after write check

40 EBCDIC file

20 Write protected file .
Excluding 200, these bits are the same
for the disk attribute byte which is the
first byte of the information sector.

10 Pointer into File Allocation Table
~ to the first cluster of the file's
cluster chain.

11-15 Reserved for future expansion.

If the first byte of a filename is zero, that file entry
slot 1is free. If the first byte is 255, that slot is the
last occupied slot in the directory, i.e., this flags the
end of the directory. .

ES
pred

Smtf
A

Page H-9

H.11.2 Drive Information

F‘cr f

i

v,

each disk drive that is MOUNTed, ' the following
information is kept in memory: e

1.

Attributes _

Drive attributes are read from the information
sector when the drive is mounted and may be- ¢hanged
with the SET statement. Current .attributes may be
examined with the ATTRS function. | . .

.Track Number

This 1is the current track whlle " the disk is

‘ mounted. Otherwise, track number contains 255 as a
. flag that the disk is not mounted. :

| Modification Counter S .,

This counter is incremented whenever an entry in
the File Allocation Table is changed. After a
given number of changes has been made, the File
Allocation Table is written to disk.

Number of Free Clusters S :
This is calculated when the drive is -mounted, Eﬂmﬁ

~ updated whenever a file is deleted or a cluster is

allocated.

File Allocation Table

The File Allocation Table has a one-byte entry'*%Eor
every cluster allocated on the disk. If the
cluster is free, this entry is 255. .If the cluster
is reserved, this entry is 254. 1If the cluster is
the last cluster of the file, this entry is .300
(octal) plus the number of sectors from this
cluster that were used. Otherwise, the entry is a
pointer to the next cluster of the file. The File
Allocation Table is read into memory when the drive
is mounted, and updated:

1. When a file is deleted
2. When a file is closed

3. When modifications to the table total twice the
number of sectors in a cluster (this can be
changed in custom versions)

4, wWhen modifications to the table have been made
and the disk head 1is on (or passes) the
directory track. ’

Page H-10

H.1l.2.1 FORMAT Program - Before mounting a

drive with a new diskette, run BASIC's FORMAT program to
initialize the directory (set all bytes to 255), set the
information sector to 0, and set all the File Allocation
Table entries (except the directory track entry (254)) to
"free" (255).

The FORMAT program is:

10 CLEAR 1500

20 A$=STRINGS (128,255) |
30 B$=STRINGS (35%2,255) +STRINGS (2,254) +STRINGS (56,255)
40 FOR S=1 TO 19:DSROS 1,35,S,A$:NEXT

50 FOR S=21 TO 25 STEP 2:DSKO$ 1,35,S,BS$

60 DSKO$ 1,35,S+1,AS:NEXT

70 DSKO$ 1,35,20,CHRS (0)

After running FORMAT and MOUNTing the drive, files will be
allocated as usual, i.e., on either side of the directory
track. ‘) ‘ '

The FORMAT program may be altered to pre-allocate selected
files. For instance, you may wish to use the FORMAT program
to pre-allocate files contiguously (as they would be
allocated in IBM mode). Then IBM and BASIC files may both
exist on the diskette. The altered FORMAT program must also
write the name of the file(s) to the directory track (d.e.,
files 1-8 in sector 1, files 9-16 in sector 2, etc.), SO
BASIC knows where the files start. :

BE.11.3 PFile Block

Each file on the disk has a file block that contains the
following information:

1. File Mode (byte 0)

. This is the first byte (byte 0) of the file block,
and its location may be read with
VARPTR (#filenumber). The location of ‘any other
byte .in the file block is relative tc the file mode
byte. The file mode byte is one of the following:

(octal)
1l Input only
2 Qutput only
4 File mode o e o
10 Append mode .
20 Delete file .
- 40 IBM mode ‘ o
100 Special format (USR)

200 Binary save

0leB = -
I . NOTE

It is not recommended that the user attempt
o to modify the next four bytes of 'the File -
L Allocation Table. Many * unforeseentﬂ;:-
) complications may result. : S

2. Pointer to the File Allocation Table entry for the
first cluster allocated to the file (+1) = h

3. Pointer to the File Allocation Table entry ﬁor the
‘last cluster accessed (+2) R -)

4., Last sector accessed (+3) ‘:H"‘ L f
5., Disk number of file (+4) :
6. The size of the last buffer read (+5). This is 128

unless the last sector of the file is not full
(i.e., Control-2Z). R

#. =7. The current position in the buffer (+6) °Thls is
. 4. the offset within the buffer for the next prlnt Qf
fzuc 0 input. * : S
opis I A o
¢, 8. File flag (+7), is one of the following:
. .. QOegtal . v
100 Read after write check .
40 Read/Write EBCDIC, not ASCITI
(Not available in all versions.)
20 File write protected
10 Buffer changed by PRINT
4 PUT has been done. PRINT/INPUT are

= R errors until a GET is done. -
(See Section H.10.) S
2 Flags buffer is empty

-~ 9, “rerminal position for TAB function: and -comma in
 PRINT statements (+8) g

-t

“ 10% Beéginning of sector buffer (+9), .128 bytes in
: - -lendth -

H.l2 ADVANCED USES OF FILE BUFFERS

1. Information may be passed from one. program to
another by FIELDing it to an unopened file number
(not #0). The FIELD buffer is nct cleared as long
as the file is not OPENed.

Page H-12

The FIELDed buffer for an unopened file can also be :
used to format strings. For example, an:
80-character string could be placed into a FIELDed :
buffer with LSET. The strings c¢ould then be :

accessed as four 20-character strings using their

FIELDed variable names. For example:

4

100 FIELD#1l, 80 AS AS

200 FIELD#1, 20 AS AlS, 20 AS A2S, 20 AS A3S, 20 AS.

300 LINE INPUT "CUSTOMER INFORMATION: ";BS

400 LSET AS$=BS 1 B

P
LS

A4s

500 PRINT "NAME ";AlS$;"SSN: ";A2S$ ' -

FIELD%#0 may be used as a temporary buffer, but note

that this buffer is cleared after each of the

following commands: FILES, LOAD, SAVE, MERGE, RUN,-

DSKOS, MOUNT, OPEN.

The effect of PRINT[USING]# into a string may be

achieved by printing to a FIELDed buffer and then
accessing it without reopening the file. To assure

that this temporary buffer is not written to the -

disk, return the pointer to the beginning of the
buffer and reset the "buffer changed" flag as
follows:

10 OPEN "D" FOR IBM AS 1l:REM THIS DOESN T USE SPACE
20 PRINT USING#l ...

y
4

1

30 P=PEEK(6+VARPTR(#1)) :REM OPTIONAL, TO GET ﬁENGQiQQF;ggiNT

USING
40 FIELD#]— e s e A«S e e e L “»« 5

50 Y=7+VARPTR(#1)

-

60 PORE Y,PEEK(Y AND &360) :REM RESET BUFFER CHANGED FLAG

70 - POKE 6+VARPTR 0:REM CLEAR POSITION IN BUFFER

"

w

o
hd
-

o
L

Page H-13

H.13 STANDALONE BASIC DISK ERRORS

50 ° FIELD overflow . g : .
81 = Internal error ' :
52 Bad file number
53 File not found
54 File already open : \

55 Disk not mounted - ' o
56 Disk I/0 error

.57. File already exists
59" Disk already mounted
61 Input past end el
62 Bad file name , .

63 Direct statement in file .
64 Bad allocation table
65 Bad drive number

66 Bad track/sector
67 File write protected
68 Disk offline

69 Deleted record

70. Rename across disks
71. Sequential after PUT
72. - Sequential I/O only
73. - File not OPEN

<.
£
B

H.1l4 DOUBLE DENSITY, DOUBLE SIDED DISKETTES

Eor dlskettes with 256-byte sectors, DSKIS$ andw DSKO$ are
“modified. .

The DSKI$ function returns as its value the flrst 255 bytes
of the sector read.

The DSKO$ statement does not use the <string éxpreséion>
field. The format is:

DSKO$ <drive>,<track>,<sector>

In order to specify the data to write with DSKO$ and to
retrieve all 256 bytes of the data read by DSKIS$, the user
must FIELD two or more variables (for a total of 256 bytes)
to the file#0 buffer. The FIELDed variables will be
identical to the data read with DSKI$ and written with
DSKO$. For example:

FIELD#0,128 AS A$,128 AS BS

For double-sided diskettes, the formats of DSKI$ and DSKOS$S
must also include the surface number:

DSKIS(<drive>,ésurface>,<track>,<sector>)

DKS0OS <drive>,<surface>,<track>,<sector>

or
DRSOS <drive>,<surface>,<track>,<sector>,<string exp>

‘) ‘ . s - omn e T
P - o " . =
. . L Py
N 5 K " .. @

N . B Pt W Y e 83 D
) » % Bl
N -,

© e el .

) P A
. EMPS rofa D d

A - -

Ceza ot z

. - .

. FOR . @ m B

& PR

AP P S

P .
L e -

- . . s e 1
- - whe w e e @S i v

i

5 e ey
Lo w0
- i o P »
TRt
» T &
B > Py . b

APPENDIX I

Converting Programs to BASIC-80

If you have programs written in a BASIC other than BASIC-80,
some minor adjustments may be necessary before running them
with BASIC-80. Here are some specific things to look for
when converting BASIC programs.

I.1 STRING DIMENSIONS

‘Delete all statements that are used to declare the length of
strings. A statement such as DIM AS$(I,J), which dimensions
a string array for J elements of length I, should be
converted to the BASIC-80 statement DIM AS(J).

Some BASICs use a comma of ampersand for string
concatenation. Each of these must be changed to a plus
sign, which is the operator for BASIC-80 string

concatenation.

In BASIC-80, the MIDS$, RIGHTS, and LEFTS functions are used
to take substrings of strings. Forms such as A$(I) to
access the Ith character in A$, or A$(I,J) to take a
substring of A$ from position I to position J, must be
changed as follows:

Y

Other BASIC BASIC-80
X$=a38 (1) X$=MIDS$ (AS,I,1)
X$=A3(I,J) XS$=MIDS$ (AS,I,J-I+1)

If the substring reference is on the left side of an
assignment and X$ is wused to replace characters in AS,

convert as follows:

Other BASIC 8K BASIC-80
AS(I)=X$ AS=LEFTS (AS,I-1)+X$S+MIDS (AS,I+1)
A$(I,J)=XS AS=LEFTS (AS,I-1) ;X$;MIDS (AS,J+1)

Ext. and Disk BASIC-80

AS(I)=XS$ MIDS(AS,1,1)=X3s
AS(I,J9=X$ MIDS (AS,I,J=I+1)=X$

Page I-2

I.2 MULTIPLE ASSIGNMENTS

Some BASICs allow statements of the form:

10 LET B=C=0

to set B and C equal to zero. BASIC-80 would interpret the
second egqual sign as a logical operator and set B equal to
-1 if C equaled 0. 1Instead, convert this statement to two

assignment statements:

10 C=0:8=0" "

I.3 MULTIPLE STATEMENTS o .0

Some BASICs use a backslash (\) to separate multiple
statements on a line. With BASIC-80, be sure all statements
on a line are§$epa:ated by a colon (:}. :

I.4 MAT. FUNCTIONS

Programs. usifng the MAT functions available in some BASICs
must - be rewritten using FOR...NEXT loops to execute
properly.

w
L

o o

1y
H

$5

i3

APPENDIX J

Summary of Error Codes and Error Messages .

Code Number
NF oo 1.
SN 2
EDIELG
RG 3
oD 4
FC 5

Message e

NEXT without FOR _ ..
A variable in a NEXT statement _does not
correspond to an previously “executed,

unmatched FOR statement variable.

Syntax error

A line is encountered that- ¢ontains some
incorrect sequence of characters = (such as
unmatched parenthesis, misspelled command or

- statement, incorrect punctuation, etc.).

Return without GOSUB
A RETURN statement is encountered for which
there is no previous, unmatched GOSUB

statement.

Out of data
A READ statement is executed when there are
no DATA statements with unread data remaining

in the program.

Illegal function call

A parameter that is out of range is passed to
a math or string function. An FC error may
also occur as the result of:

1. a negative or unreasonably large
subscript

2. a negative or zero argument with LOG
3. a negative argument to SQR

4. a negative mantissa with a non-integer
exponent

ov

oM

oL

BS

DD

/0

ID

L

6

L B
A SO

7

8

9

11

12

13

e

Page J=-2

5. a call to a USR function for which the
starting address has not yet been given ™~

"6. an improper argument to MIDS, LEFTS,

RIGHETS, INP, OUT, WAIT, PEEK, POKE, TAB,
SPC, STRINGS, SPACES, INSTR, or
ON...GOTO. .
Overflow

The result of a calculation is too large to
be represented in BASIC-80's number, format.
If underflow occurs, the result is zero and

 execution continues without an error.

Out of memory
A program is too large, has too many FOR

. loops or GOSUBs, too many variables, or

expressions that are too complicated.

tUndefined line

A line reference in a GoTO, GOSUB,
IF...THEN...ELSE or DELETE is to a
nonexistent line. ‘

Subscript out of range

An array element is referenced either with a
subscript that 1is outside the dimensions of
the. array, .or with the wrong number of

. subscripts.

Redimensioned array

Two .DIM statements are given : for the same
array, or a DIM statement is given for an
array after the default dimension of: 10 has
been established for that array. o

Di&ision by zero
A division by =zero is encountered in an

- -expression, or the operation of involution
. results in zero being raised to a negative

power. Machine infinity with the sign of the
numerator is supplied as the result of the
‘division, or positive machine infinity is
.supplied as the result of the involution, and
execution continues.

Illegal direct
A statement that is illegal in - direct mode is
entered as a direct mode command.

Type mismatch
‘A string variable name is assigned a numeric

_value ‘or vice versa; a function that expects

a numeric argument is given a string argument
or vice versa.

os' . 14
,’ .

LS 1s
st 16
< B ¥
uF 18

19
’ S ’2@ A
[t :
&
& Ak .2'21?

‘A string

© A USR function is called before the

Page J-3

Out of string space

String variables have caused BASIC to exceed
the amount of free memory remaining. BASIC
will allocate string space dynamlcally, until
it runs out of memory.

String too long

An attempt is made to create a string more

o,

_than 255 characters long. N

String formula too complex
expression is

complex. The expression
into smaller expressions.

‘too - long or too
‘shoi1ld be broken

-

Can't continue
An attempt is
that:

made to continue a program
: .

1. has halted due to an errox,

2. has been modified durlng a break in

execution, or o &
3. does not exist. S » T
Undefined user function

function
definition (DEF statement) is given.

" Extended and Disk Versions Onli

No RESUME
An error trapping routine :is
contains no RESUME statement.

entered but

L

TRESUME without error

A RESUME statement is encountered before an

~ error trapping routine is entered.

Unprintable error

An error message is not available for the

error condition which ‘exists. This |is
usually caused by an ERROR with an undefined
error code.
Missing operand :

. An expression contains an operator with no
operand following it.
Line buffer overflow :

*An attempt is made to lnput a. line that has

too many characters. S

.26

29

30

54

55

57

Page J=-4

- FOR without NEXT

A FOR was encountered without a matching
NEXT. '

WHILE without WEND

A WHILE statement does not have a matching

WEND.

... WEND without WHILE
-~ A WEND was encountered without a matching

in.

; ;WHILE.

7

Disk Errors

";Field overflow

gz‘ .

""A FIELD statement is attempting to allocate

more bytes than were specified for the record
length of a random file. : :

‘Interhal error
" An internal malfunction has occurred in Disk

BASIC-80. Report to Microsoft the conditions
under which the message appeared.

iR

‘ééa £ile number
" A statement or command references a file with

a file number that is not OPEN or is out of
the range of file numbers specified - at
initialization. ’ .

‘File not found

A LOAD, KRILL or OPEN statement references a
file that does not exist on the current disk.

Bad file mode

An attempt is made to use PUT, GET, or LOF
with a sequential file, to LOAD a random file
or to execute an OPEN with a file mode other

than I, 0, or R.

File already open

A sequential output mode OPEN is issued for a
file that |is already open; or a KILL is
given for a file that is open.

Disk I/0 error

An I/O error occurred on a disk I/0
operation. It is a fatal error, i.e., the
operating system cannot recover from the

error.

[T

%

58

61

62

63

64

66

67

Page J~5

File already exists
The filename specified in a NAME statement is
identical to a filenamé already in use on the

disk.

Disk full .
All disk storage space is 1n use.

Input past end

An INPUT statement is exeucted after all the
data in the file has ‘been INPUT, or for a
null (empty) file. To avoid this error, |wuse
the EOF function to detect the end of file.

Bad record number TR
In a PUT. or GET statement, the record number
is either greater than. the maxzmum allowed

(32767) or equal to zero. .

" Bad file name

An illegal form is used for the filename with
LOAD, SAVE, KILL, or OPEN (e g., a filename
with too many characters) .

Direct statement in file :
A direct statement 1is encountered while

LOADing an ASCII-format f{le. The LOAD is
terminated.

Too many files
An attempt is made to create a new £file
(using SAVE or OPEN) when all 255 directory

entries are full.

‘ .

PO e ks e
TR N

T T el

e
eAETTO

-

-

o

s JA P S

N

P

e mug s Bt T R N

o I A

f oo 3 L -

R ¢ e

o e

L 2 - TR

ol []

5 . oS S S

R F T T it

P

. . . LR P
i B PR

A w1 9% S P

o B R N,

Y and VA O

Derived Functions

Functions

Function

SECANT
COSECANT
COTANGENT
INVERSE SINE
INVERSE COSINE
INVERSE SECANT

INVERSE COSECANT
INVERSE COTANGENT

that are not intrinsic

cal:ulated as follows.

HYPERBOLIC
HYPERBOLIC
HYPERBOLIC
HYPERBOLIC
HYPERBOLIC
HYPERBOLIC

SINE
COSINE
TANGENT
SECANT
COSECANT
COTANGENT

INVERSE HYPERBOLIC

SINE

INVERSE HYPERBOLIC

COSINE

INVERSE HYPERBOLIC

TANGENT

INVERSE HYPERBOLIC

SECANT

INVERSE HYPERBOLIC

COSECANT

INVERSE HYPERBOLIC

COTANGENT

APPENDIX K

Mathematical Functions

to BASIC-80 may be

BASIC-80 Equivalent

SEC (X) =1/COS (X)
CSC(X)=1/SIN(X)
COT (X) =1 /TAN (X)
ARCSIN(X)-ATN(X/SQR(—X*X+1))
ARCCOS (X) ==ATN (X/SOR(-X*X+1))+1.5708
ARCSEC (X) =ATN(X/SQR (X*X~1))
+SGN (SGN (X)=1) *1.5708
ARCCSC (X) =ATN (X/SQR(X*X-1))
+(SGN(X)~-1)*1.5708
ARCCOT (X) =ATN (X)+1.5708
SINH(X) = (EXP (X) -EXP(=X)) /2
COSH (X) = (EXP (X) +EXP (~X)) /2
TANH (X) =EXP (-X) /EXP (X) +EXP (=X)) *2+1
SECH (X) =2/ (EXP (X) +EXP (=X))
CSCH (X) =2/ (EXP (X) -EXP (=X))
COTH (X) =EXP (=X) / (EXP (X) -EXP (=-X)) *2+1

ARCSINH (X) =LOG (X+SQR (X*X+1))

ARCCOSH (X) =LOG (X+SQR (X*X~1)

ARCTANH (X) =LOG ((1+X) /(1-X)) /2

ARCSECH (X) =LOG ((SQR(=X*X+1) +1) /X)
ARCCSCH (X) =LOG ((SGN (X) *SQR (X*X+1) +1) /X
ARCCOTH (X) =LOG ((X+1) /(X~-1)) /2

e

"

e

s

3t

R B
) -t s
¢, 1
o s
. .t
i I
B
+
g :
. ; . %
i t
Enl
s
.
[t

e
[T]
{3 4
£20 £
1

wo

w.(_. by

A

iy . Nt L =
. ¥ .
T - 7%
* LS
o E n
ke
& B
. -
3
- x- - ¥
N
[N
. §
o . - N
£,
.
e £ Wy«
B “r

By
R4 S

£

A
75

b

APPENDIX L

Microsoft BASIC Compiler

The Microsoft BASIC Compiler package contains the following
software: BASIC Compiler, MACRO-80 assembler, and LINK-80
loader. The following manuals are also supplied: BASIC-80
Reference Manual, BASIC Compiler User's Manual, Utility
. Software Manual. The Utility Software Manual is the
reference manual for MACRO-80 and LINK-80. The BASIC
Compiler User's Manual describes the use of the compiler, .
its command format, compilation switches and error messages.
The BASIC language that is used with the Microsoft BASIC
Compiler is the same as described in this manual for Disk
BASIC-80 with the following exceptions:

L.l OPERATIONAL DIFFERENCES

The Compiler interacts with the console only to read
compiler commands. These specify what files are to be
compiled. There is no "direct mode," as with the BASIC-80
interpreter. Commands that are usually issued in the direct
mode with the BASIC-80 interpreter are not implemented on
the Compiler.

.

The following statements and commands are not implemented
and will generate an error message:

AUTO CLOAD CSAVE CONT DELETE
EDIT ERASE LIST LLIST LOAD
MERGE NEW RENUM SAVE

Because there is no direct mode for typing in programs or
edit mode for editing programs, use Microsoft's EDIT-80 Text
Editor or BASIC-80 interpreter for creating and editing
programs. If you use the interpreter, be sure to SAVE the
file with the A (ASCII format) option.

The compiler cannot accept a physical line that is more than
253 characters in length. A logical statement, however, may
contain as may physical lines as desired. Use line feed to
start a new physical line within a logical statement.

Page L-2

To réduce the size of the compiled program, there are no
program -line numbers included in the object. code- generated
by the compiler unless the /D, /X, or /E switch is. set 1in
the compiler command. Error messages, therefore, contain
the address where -the error occurred, instead of a line
number. - 'The: compiler listing and the map generated by
LINK-80 are wused to identify the line that has the error.
It is always a good 1idea to debug programs using the
BASIC-80 interpreter before attempting to compile them. See
the BASIC Compiler User's Manual for more information.

[e

< . .o = PN

*‘: it

L.2 LANGUAGE DIFFERENCES | :
Most pfbéfams gﬁatgfun on the Microsoft BASIC-80 interpreter
will run on the BASIC Compiler with little or no change.
However, it is necessary to note differences in the use of
the followipg program statements: R

1. CALL .
The <variable name> field in the 'CALL statement
must contain an External symbol, i.e., one that is
recognized by LINK-80 as a global symbol. ' This
,zoqﬁine must be supplied by the user as.gﬁjassembly
language _subroutine or a routine “from the
FORTRAN-80 library. R

> wlo P

2. CHAIN and RUN N
The CHAIN statement is used to <chain to a new
.program overlay using the runtime module. The RUN
" statement is to be used to execute - -any -executable
file. (Under CP/M, any .COM file may be “RUN.)

o s,

7.~ The CLEAR statement is only supported :im - compiled
. -programs’ using the runtime module. ©" A
4. COMMON- - CwRES

 “TPhe COMMON statement must appedr -’ before any
executable stateménts., See section. 2.7 for further
details.

R e

o gwen
- o

e v

"5, :DEFINT/SNG/DBL/STR - - ‘

: " The compiler does not "execute” DEFxxx ' statements;
it reacts to the static occurrence::wof these
statements, regardless of the order in which
program lines are executed. A DEF#x% "statement

> takes effect as soon as its Jine: is encountered.

. Once - the. type has been defined :for - a given

variable, it remains in effect until: the.end of the

- program or until a different DEFxxX statement with
that variable takes effect. ‘ AR Y

£ % . . s

. g

Page L-~-3

6. DIM and ERASE
w7 £°% The DIM statement ig . similar o - sthe :: DEFXXX
Letstt v 'statement in that it is scanmmed -rather _than
il .-z executed. That is, DIM takes effect when its -line
“ivinis i encountered. If the default dimension (10) has
* already been established for an array variable: and
© - that variable is later encountered in .a :(DIM

B
o
"

;3: ‘ >M§qatement, a "Redlmen51one6‘array efﬁor results.-ﬁ
eat There is no ERASE statement in - the : ”compller,,wsd
arrays ‘cannot be erased and rédimensioned. °An
ERASE statement will produce a fatal error.
Also note that the values of the subscripts in a
DIM statement must be integer constants,a,tney may
o _not be variables, arithmetic expeSSLOns, ~or
e floatzng ‘point values. For example, e B
; DIM ‘AL(I) * Eoen e
DIM Al (3+4)] : < B -
.. . are both illegal. -
‘géﬁéﬁ:f END | | ; Lo
e Durxng executlon of a complled program, an END

, statement closes files and returns control to the
operatlng system. The compllér assumes an END
statement at the end of the program, soO "running
off the end" produces proper program termlnatlon.

Py R ¥ ey e
W F i

VQ; 8@7 fOR/NEXT’and WHILE/WEND N R
€% . FOR/NEXT .and WHILE/WEND loops must™ be statically
~gnes¢ed.; . . L
9. ON ERROR GOTO/RESUME <line number> -
i .» If.a program contains ON. ERROR .GOTO and RESUME
<line number> statements, the /E complla;ion switch
must be used. If the RESUME NEXT, RESUME, or
RESUME 0 form is used, the /X swltehamust also be
Lo - -included. See the BASIC Compiler: User's Manual for
S.oart Lotan explanatlon of these switches. . _ -.
10. REM)
REM statements or remarks starting ' with: a single
s ﬁquotatlﬁn mark do not take up time ,or space during
epe 'ﬂexecutxon, .and so may be used as freely as desired.

*M.SEOP 5 . , .

-+ .The 8TOP statement is identical. to the END
statement. - Open files are closed and control

- vreturns to the operating system. B

12. TRON/TROFF T
In order to use TRON/TROFF, the /D compilation
switch must be used. Otherwise, TRON and TROFF are

ignored and a warning messagde is generated.

.
:
¥
-t

sampse,
Prs

" i

i

P
ie
i w
ol

P

APPENDIX M

ASCII Character Codes

ASCII ASCII ASCII

Code Character Code Character Code Character
000 NUL 043 + 086 v
001 ‘ SOH 044 ’ 087 W
002 STX 045 - 088 X
003 ETX 046 . 089 b4
004 EOT 047 / 090 z
005 ENQ 048 0 091 [
006 ACK 049 1 092 \
007 BEL 050 2 093 1
008 BS 051 3 094 ~
009 HT 052 4 095 <
010 LF 053 5 096 '
0l1l V vT 054 6 097 a
012 FF 055 7 098 b
013 CR 056 8 099 c
014 [le] 057 9 100 4
015 SI 058 : 101 e
016 DLE 059 : 102)
017 DCl 060 < 103 g
018 DC2 061 = 104 h
019 DC3 062 > 105 i
020 DC4 063 ? 106 j
021 NAK 064 Q 107 k
022 SYN 065 A 108 1
023 ETB 066 B 109 m
024 CAN 067 C 110 n
025 EM 068 D 111 o
026 SUB 069 B 112 P
027 ESCAPE 070 F 113 q
028 FS 071 G 114 r
029 GS 072 H 115 s
030 RS 073 I 116 t
031 us 074 J 117 u
032 SPACE 075 K 118 v
033 ! 076 L 119 w
034 " 077 M 120 X
035 % 078 N 121 vy
036 $ 079 0 122 z
037 3 080 P 123 {
038 & 081 Q 124 1
039 ' 082 R 125

040 { 083 S 126 -
041) 084 T 127 DEL
042 * 085 U

ASCII codes are in decimal.
LF=Line Feed, FF=Form Feed, CR=Carriage Return, DEL=Rubout

N o
. Yo »
. s “ E
- 2t 2
N - e
5 N
. v

. . “
R N Toa
o . 2
. ¢ B g . . . »
s . . B
w - ; . “
. . . e +
-
- 2
B g + *
e e J
- % .
B . s -
. . .
. w *
A . o « . \
- f B : v -
E . “ ®
I
. . B .
. . e e
. . . . =
.
. ¥

-
[
P
=K
>

T

«

»
PRI

kY

»

-
-
VoA

-
¥

3
&

*
S8
% W
“

-2
E

w
«

L
¥ "
e
x e

Toam
N ®
" ”
v
. *
1 .

a

gx e g

e e Bl

.
. (F L
o e
. e
sl v e
AW
[)
e TR A
.
P
sy { ek
T W e Y e e .
wae g
P
el e w
B
"
~ P
P [
Dom ey e
PR S
e
e I
' e

sy o
N P
ey s
FTUVAZD
p—

16t

R

PO g S
13 LA
oy v

. s 8
o

INDEX

. L"’4

$INCLUDE .

3-2
. l"lo

*

ABS

Addition .

ALL

L-5

2‘19 ’
2"12’

2"9 ?

2-9
2""7’

2"'4;
3-3
1‘7’

* - - - . L]
L] L4 . . L d L
* - * - . L]

L]
-
-

Array variables
Arrays .

Arctangent .
ASC

1"7 2

-*

-

2f25

3-2

»> .

3-4

*

ASCII codes

3"2 ’
2"4'
2"'3 r

L-1

L d L] . » . - <

ASCII format .

2"78'
2“'60 r

2-50,
2"'17 7

3-23 to 3-24,

Assembly language subroutines

C-l ’ L-Z

- - L]

-

3"’3 ’ L"'4

. H"‘S

. E"‘z

2-2

- 1-2,

3

-

- e]
™ ~
<y 4
] o
o~
O
(o} +»
4
™~
o~ ~
< U
(o I } o~ o] o o~
1 N L 1 1 i
-1 w3 w1 m ~
-~} o~ o
s~ N - - -~ - < [T3]
inm e~ o —~ ™ o 1 < 1
1 101 4 ! U ! o~ 1t~
oNUN N < m o =)
o~ ~ sl o« - [- [Ts} P o) ~b~
— MO MNMNSMNL OIS0 P P <O
! LN O T L A N O RO I T T N T T O T N T I I
() NrHANANMNANOANNNNNH NN~
. L * * L4 - L L L] ° L] L4 . L] L * L * L L4 . * .
L d . . L d * * * . [] * L] . L] L . * * . .
L . L] . a & 2 o 5 ¢« s s s 0 . . @ . L I N 4
- L] L d - L L] L] ¢ . . . L . L] L] L] L L] o * L d . L
. . e ¢ 6 ® ¢ & ¢ 0 5 & & & * 8 e e + & 3z W ®
* Ld . * * L . * L] * L] L * L] L] » * L] L] * L] L L]
LI] * ¢ o © & ¢ ¢ & 5 & 0o 2 & & * s {) e o 0
n 54
1 ¥ . ¢ o & o ® * & & 5 & o s o ¢ ¢ o (P ¢ s o
(o} =] +
o) LI ¥ . » e & ° o o & 9 » o s 0) o ¢ o
" s] o + 4] N
| ¥ LIS Dy ¢« o@ ¢ o o ¢ o o o Q) 20 ¢ ¢35 o o o
o @ o] (V] > -~ o
[o 1} T ¥ 43 e . s & o o o s s) o o « o
o bl ~ gu U«
s @ D o 2+l o o s s s s . e L4 o § o o
=} o W 4+ Lo (3 =} o
W +@8 U e U oo X0 FZOAM 00 » o
] - o & MMMMEaOat (YR
- g a N HMYE SmmcsTtt M
S 4N nRESEAAIRI368665688m
m U CCCCCCCCCC@CCCCCCCWC

B“"l r D-l

DATZ . « o o« o o o o o s o o o 2-13, 2—75

DEF FN e ® & e o & * & @ .3 ‘s e 2"'14 . . .

DEF USR ‘e e e ‘,rf.: “'o’ o e” e e 2"'17, 3-23

DEFDBL « « « » o o o o s o o 1=7, 2=-16, L=2

DEFINT . o o« o « o s « o #le o 1=7, 2-16, L=2

DEFSNG « ¢ « « o« « o s o o s o =7, 2-16, L=2 .

DEFSTR . . » o « v o o « os o 1=7, 2-16, L-2

DETINT . &+ v v o o o « « « « o C=1, G-1

DELETE . » o « o « o o o v v o 1=2, 2-4, 2-18

DIM « o o v v o v wii e« v e 2-18, L-3 AR
Dir act mOde e ® Yo e A.:' ’o ";o/?" "0"; . l"l’ 2“"35' 2 55 L"’l N "-"::.,A‘ -
Div iSion e & e & ©® & & @ & o . l"'lo B 3 i
Double precision . . . « « ¢ o 1l=5, 2-16, 2-61, 3-3, A-l,

", Li-4d . : wd
DSK : s s o o & & e & & ,?'0‘ ‘c:@ 6: H""Z ? B"la . . N
DSKGs e & e e ®= e @) H'.z] 3‘13 v

C1-2, 2-20

1-4, 2-20, L=l
2-g, 2-11, 2-24, 2-33,

Ed g\‘

i

%

EDIT « « o o o o o «
Edi €t mode

L]
.
*
*
*

.
L]
L]
L4
L]
]
-
EA
*
»
L4
“

END e o o o o e o 8 & ‘& o e e -
EOF e s e s o & 6 e © & € o, e 3 6 r B"'3 B‘-S ? D"4 ’ Ce e :‘ h«;
ERA.SE wied o e o o ale & .: . 2"‘25 L"B ’ o . l
ERL e o & @-a e & e G @ f e aai" . 2"26) o
ERR e e e e o « o o s Yo v e 2“ 26 . %
ERROR e ¢ & 8 ® @ ® e e o ~& 2"27
Errcr COdeS . . e ® o o e o: . l"‘ls 2"26 tQ 2"27 '« J.;lz
ErrOr MESSAGES .c « o o o o o o 1-16, J-1, L=-2
Error trapping . « « o « o.s « 2=26 to 2-27, 2-55, 2-76,"

R .) eﬁ; ’ « ; B"’7 rs L"B - w“ . .. H
Esc ape LI : . ; o s e o o o . 1‘3' 2"'2 0) & woms N
EXP e« o o e s & & s e & o .. 3"7 r L"4 L o
Exponentiation7. . . + 1=10 to 1-11, L-4 = Fo i
EXpressions . .. « ¢ 32 o o o @ 1-9 ’ i - L

%
T or

FIELD .+ ¢ « o e o o a o ' 2-29, B-a, H-11

. ¥

¢ e &« 5 & & o © L
FILES o o o « @ o o0 o o o o D=3, B=2" 0 o
FIX . . e ¢ o o ¢ e o & o .; 3"'7 " :),
FOR <. NEXT ¢ ¢ o ¢ ¢ o e .« » 2‘.30 A"’l ’ L-B : N j : = .Q&j
FORMAT Program . «;e « « o.a « H=10 "~ - .
FPOS e o o+ e o o @ : . Q e a . o‘ . H“z . ‘ . “;
FRC INT « &8 e @ @ v .«s > e 4;». K . C'l, C"4 ? D""4 G"l e o n
FRE .) o ' : . o : o e g 0 o 3'“8 ; N ‘:, :.v,«\.;ui
FunCtions e e o e a a e q} oi o 1914 2"14 3"'1 ’ (K""'l ‘;’ r‘::
GET o & ®» ¢ _.® ® e e e & & © 2"29 r 2‘32 B‘B D"’4 y '

¥,

e ’ 2t HeT e

GIVABF « « « o« « » o « « s« » C=L to C=2, G-1
GIVINT v « o « « o o o o« o o« ¢ E=2 oo

GOSUB .« ¢ « ¢ s o°5 ¢ ¢« o o ¢ 2=33-

GOTO . . « « ¢ 3 .:.‘;". dre g e 2= 33 to 4=-34

HEXS . e o e © o e & & & o e @ 3-8 ¢ N B v -
Hexadecimal . o« ¢« « & o e o < 1=5, 3-8~ O

IFe <eGOTO « & « « o o o o o . 2=35 e
IF‘ - -THEN e ©o & ® & e & © w”a, . 2"’26 2 3‘5 » - - ;} G iA
IF. - OTHEN-, - .EIJSE[e s e e T e ‘ e 2-—35 . : FVI ‘l‘“‘.:,.;_ e

3-10
2-39
3-11

B-9.
- B"'3

.
..
.
3
.
LN
b

"
. "o

-

- N
B

L] -

3
[
-
L]

-
L]
.
L]
-
-
.

Indirect mode
INREYS

INP

INPOUT

INPUTS

INPUTH

INPUTH

INPUT#

INSTR

" (R 5
i wf%a
. A M
s, s oy
¥ s
o
“ix L
i
A T E %o
o~ €2
e ® L .
RO
‘N~ -
e~ 1
il BY
mm . .
-
) ~
Ll s I Bl
UL N N)
mAYoN
¢ ¢ o v 8 B
;,o, .o XM ‘,ﬂo\ *«. ;M‘.r.
- 4%y o el
SN T S
CLS T vt
;o8 . o
LR I R P
4 v %
o e s o R
L
. o nmwo . »
o’

o sopfd o o
s .
o.f-l '] - Py
v D
¢ g e) o
T .U
. . p '
LA R
e QO M+
Dol Mo
VU oW
MttMtI
= =a5
B Rl el o]

el

L] *
4

.

PO

L3

LEFTS
LEN

KILL
LET

A _
@ ,
, -~
(a4]
g P
i L I
(o} L
. igx ?w- B
O «
C P e
1 o
o Al o
U -+ i
oM U o
™o
- - o T
L ~1 (o)
<§ ~o 1
1 ™ ~
o~ i 0")
P M
™ O AR S AL
330933137
3n43«£%0«354k
! e e 0 ¢ s e »
e e 0 8 e T agerigeigl
ke & ¥
¢ e e 0 . e e w
¥, B *3 .~
e ® e s o 0
. on .wl e & ‘e o
¥ R
o o » o o e Y
. ..

.
*
L
L]
-
]

- o
. . BHEE
o DDD
LI PP«P
@ N“Nm
o U U4 L]
o4]
= MEE
- o -4
fry o 4 -
W1 LR

&

=g
.

3-14,

RN

2"'84 Fi
B-1

B-3p B':'S, 3-8, H"ziﬁ

2‘-48 r
E=2

1-1, 'L-1
2"78 ?

2-44

L-2
2"46,
A"Z'
1"2’
: C"i' C"4’ ﬁ-4' E-Z, G"'l
¢ « D=1

. 2"'4;7’
& e G-l

. 0) 2"46’ F"I' G"ZF

% \'
et
.
S
CRS
3
c e

g
L P
L]

a®
»
L

*
e
L]
5 Yo
L]

»
-
L g
-
.
.

" o

-
®
.
L]
[
*
.

L
-
L]

»

LPRINT USiﬁﬁxq v e Ll e

Logical operators
Loops
LSET .

Line printer .
LPOS

Line numbers. .

Lines
LIST
LLIST
LOAD
LOC

LOP

LOG
LPRINT .
MAKINT .
MBASIC .
MDS

% 53,
G
v Lu
. -
o~ !
—I N ,p.y,.xmh.,
m
N -
-
Q{00 0000
w §f
I vmome;m
o~
L N S *
st NNe—{ed O
SN rd e e
| L L L L LA
N M e e
e 6 e ¢ et s o e
S e 9 e e 8 e e &
B y
o o o o o 8% e 0

*
-
.
[
.
-
*

°

Q
ord
¢ o s o o o 4) e o
o
LI AR N =N -
£ 0
e » ¢ o o WA e
Ot 4
* o 3 ¢ o)y s
gd O
. & o o s 3 . ~pd
QuM
» s 0 o Ty
53] Ot Eiort
uununny 920
LR
umMumMmmMM:MM

NAME . .

o & iw &, s‘f/’.’m Wo(-",fo . .€2-52
Negation e e e s e et e o7« L1=10
m ‘e @. 8 o o o & e o o . c‘ . 2'8 I 2"’5 3
NULI-I K3 - . e .o « o » . . ¢« & e 2?”54 . :
Numeric constants 1l=4
Numeric variables . & « o o o 1#7
OCTs e ® e & e ® s s & @ ‘:~;v ... 3‘1;6 : “ - :,“1;,' .
Octal . e e e o & o © o NP 1‘5 o -_16 i o
ON ERROR GOTO B S 2=55,. L'-3
ON‘ - oGOSUB « e o o o o ;- - lm..4 'o.. 2\;"56
OoN. .-GOTO’V“_ “T.e e & e e ao o s 2"56 R e
OPEN « & Ao ’ .. . c e e ‘ o‘-' “ o e ‘b~ 2"'8 o 2"29 ’ 2“‘57 B"‘B r

< B-8,. H~5. to H=6
" . 1-9,7 111 to 1-13 3.-15, :
AL

O‘peratcts . . ‘ ¢« o s o

. Ba58 . “"' .

OPTION BASE ‘v 4 o ¢ a'vé »'ue 4 v

ouT e & e s o o e o n “o o o e 2"59

Overflcw e o o % o o—s o 8 e '% %“1.1 y - 3"7' 3"22 ’ ‘A:-l\’,c’ oo

Ove:lay . oo

Paper 'cape e e e e e e e e wi2-54

PEEX . . . ; e e - . @ aof . ' ou 2"60 " 3‘16 ‘

POKE e e e ’. ‘e .“ . \Q”‘.‘ . P 2‘60, 3‘16 .

POS « o o e o o e« o o o o’i o”*‘. 2“‘84 3 17 E ’ -

PRINT e ®& e ® & & & & e c‘. .w'ﬁq 2'61, A"’l ’ e

PRINT Us ING e ® o e e . e o o »o 2‘63 A‘”z

PRINT# s e e & s o e o & o . E"'7

PRINT# USING e & o & 3 ‘e e N- .- B"’s .

PRINTS USING « « « « o o % o.o B=3 °

PRINT# s e & ® ‘6 e & o . Fer B-3.

PRIM# USING e ¢ o o o - . c o 2-67 ¢

PRINT# e 6 & © o e o s © e ; . 2"67 ot

Prc teCted flle e &6 ‘e o e . . 2"78 3 A-Z ’ B‘Z ' ’

PUT ¢« & e © & & e @ . " « o e -- 2"29 2‘69' 3‘8, H"‘T .

Random files . < v ¢ « o o o 2-29 ’. 2—32 - 2-40, 2=49,
S .,B-7v D“4 .

Random numbers . . « - s o o o 2=70, 3-18

RANDOMIZE e ¢ o e o o o e . J. 2”70 r 3"18 ’ A‘l

READ s ® e ® e & e o & a .'/ o . 2"71’ 2"75 .

Relational operators, 1l=11

REM ® o o s e o e ¢ o ;c» © :0 2 . 2"73 ’ L‘B

REMOVE e e & & © s e o—;: .« . "?—.’ o. E""B v '

RENUM Y . . . - - . c: e o. g ‘v- 2"'4 ’ 2‘26 r 2-74‘

RESET e o e ¢ e o o % h « o & s Q-B ’ ! CF o *

RESTORE . . 3 . & o ; V . o "6 e 2‘75 . : . RS “"*?

RESTUME . « « . ¢ ¢ s o o ¢ € e 2-7‘6; ra L"’3 N - »

RETURN . e © © ® e o © o © ; ® 2‘3:3 E i *

RIGHTS ° . - . o @ ; " 3“17

RND s e & & e e & e © & o o s 2-70 ’ 3-18 ? A"l

RSET e & & © & © % © e e o & 2"49’ B"’a

RUbOut e & @ e o & e 8 o & o s 1-3 I l‘lS; 2"21 :)

RUN e o s e o & e e- 8 e = o 2"77: to 2"'78' B"Z, L""z

SAVE . . 2-47, 2-77 to 2-78, B-l

L]
.
L d
.
®
.
-
[}
.
L d
.

'§BC .

» Sequential flles

- SET .

SIN .
* 8ingle

- Space Requirement

' SPACES
SPC .
. SQR .

. Standalone Dlsk BAS

‘STOP .

‘String
String

-8tring
String
String
String
STRINGS

Subroutines

‘Subscri

-Subtraction

"SWAP .
SYSTEM

TAB .
Tab .
TAN .
TEKDOS
TROFF
TRON .

USR .
USRLOC

VAL .

Variables

VARPTR

WAIT .
WEND .
WHILE
WIDTH

WRITE
WRITE#
WRITE#

WIDTE LPRIN

- - L] - .
- L d * . L]

- . L] . L]

precision

e o s o =
e e o e »
* .« »
. o"t". ‘.

Y T
e e e ‘e @

constants
functions

operators

space . .
Variables

variables-

- L] . -

- .
PtS . . .

* L]
- L] - - *
. o * s
e & e s @
Ll L4 - . -
e & e o o
e o o e @
e o e o o
e« ¢ o s o

o, e

o, o e

e ‘o o @ e
;s P

L » L 2
L]
.

»
L d

. s = o
. e » o
- L4 - o
- « e o
T . .
. s e
. e o o
. « o o

gL

«.V ,
s & 6 & &8 s b 8 8 &

R N .
.

s

s e ‘s .

. * * 0».(7'. . L]

T,?finootmoooo

s 6 6 o & o » s s @

- & » * . » . .

o}

o o o M s o » o

O

o s s 0.8 0 & & » .

‘. s o & o o

PR AR
s &8
. 4

® & ¢ o s & s .

N
]

kS -
e e e 8 & @
L

.

L

g

PR 3
e e 9

- s . L] L) . .

."o o o' G o e @ ‘s
&

%

i

ar
.

- .
. e
o

i;bles .
o e 3= 19',‘ ,
3-20". 7

. 3=18"

G-1

2-39 to 2-40,
2-86,

"2-67,
B-3 -
H-4
L~4.
1_5, 2"16'
1-8 .

3 20, L-4

SR

,‘24163-

i 2“33'
2- 19,

1‘"{ - 2-81' L—3

<
¢ e
o e
. e
L
e e
.
s e
. e
e
R ».‘C
- -
b
. re
e o
“
e e
v
¢ e
o »
" e L]
«
. Vé
. n
. e
& N
B
e e
o e
-

o 8 apune o TR

ey
-

.

2"81'

- 2=17, 3—23
C-2 G-1 .

o.""' 3‘-2 3

1-6, L-5

3~z4*'g-10

2*82
2"83 ’
2"83 ’
2-84 r
2_84 ’
2-85
B-3
2-86

L-3
L-3
a-2
A-2

2"2 4 7.

Af3‘8’ A-l,

L-3.

3-6,

4

Lomd T

2"‘61 r

2-33,

L3-6, 3-11 to 3-13,
- 3-17, 3-21,

3- 23,

B-9

2-43 r.
3-13, ..

2-57,

&

Com s e

- »
T

po

2-79,

VAT
= R

B-IS,

I l ..

2-42 to 2-43'

2-56, C- l
2-58 L-3

Cc-1

w e
T
s :
Wk %
. -
.l v
iy -
el e
i
o
»

e

IEEIN

b P

R

;. I
an

« -
JEA T
« b
. . o
DA i
«
et bt
R
T Sy
d B - PR Ly e . . LR .
e e e e e -)
J Caave s w L e T L e e e -
T
¥

e PR P P PROEE ; © A X
A RIS = Deer - R (SN PN . .
v - T

A Fne

e
ep e i

Ry,

B

e AL <

R X

o

.

I3

- Microsoft
Software Problem Report

Use this form to report errors or problems in: [] Microscft BASIC-80
[C] Microsoft BASIC-86

Date © [[] Microsoft BASIC
R Compiler

Report only one problem per form.

Describe ybur'hardware and operating system:

P .

P g DL e i e

BASIC ‘Release number:

Paa— e

Please supply a concise description of the problem and the :
circumstances surrounding its occurrence. If possible, reduce
the problem to a simple test case. Otherwise, include all '
programs and data in machine readable form (preferably on a
diskette). If a patch or interim solution is being used,
please describ® it. o ' S

This form may alsoc be used tﬁldesgpibe'sugggsteﬁ enhancements
to Micreosoft BASIC. '

Problem Description:

-QvVer-

Did you £find errors in the BASIC-80 Reference Manual?
I1f so, please include pagevnumbers,and describe:

Fill in_the fo;lcwing,ianrmatiqn-befcre:returning this‘fd:mt

Name sl : L Phone
. eme—— g : . S

Organization

R N S

price e prarpe

Address___ 4 _ City | State_ zip..

Return form to: Microsoft

10800 NE Eighth, Suite 819
‘Bellevue, WA 98004

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	193.pdf
	194.pdf
	195.pdf
	196.pdf
	197.pdf
	198.pdf
	199.pdf
	200.pdf
	201.pdf
	202.pdf
	203.pdf
	204.pdf

